39813

Анализ качества АСР

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Анализ качества АСР. Системы построенные только по условиям физической реализации как правило не удовлетворяют показателям качества а реализация переходного процесса близко к идеальному связано с большими энергозатратами. Наиболее тяжёлым для АСР является единичный сигнал поэтому если АСР удовлетворяет заданным показателям качества при ступенчатом воздействии то она будет вести себя не хуже при остальных воздействиях. Методы оценки качества переходного процесса АСР.

Русский

2013-10-08

433.5 KB

12 чел.

Лекция 9.

Анализ качества АСР.

Разрабатываемые АСР должны удовлетворять определённым техническим требованиям:

  1.  Физическая осуществимость;
  2.  Устойчивость;
  3.  Точность регулирования в установившемся режиме – статическая ошибка, ошибка по скорости и ускорению (для астатических систем);
  4.  Качество переходного процесса.

Таким образом, АСР тем качественнее, чем точнее она воспроизводит полезные (задающие) воздействия и чем сильнее подавляет возмущающие воздействия.

Системы, построенные только по условиям физической реализации, как правило, не удовлетворяют показателям качества, а реализация переходного процесса близко к идеальному связано с большими энергозатратами. Таким образом, на практике находят компромисс между качеством и стоимостью.

Качество АСР оценивается по реакции на типовые воздействия: единичная ступенька, единичный импульс, гармонический сигнал (sin), шумовое воздействие – случайный сигнал с заданными вероятностными характеристиками.

Наиболее тяжёлым для АСР является единичный сигнал, поэтому если АСР удовлетворяет заданным показателям качества при ступенчатом воздействии, то она будет вести себя не хуже при остальных воздействиях.

Различают три вида реакции на ступенчатый сигнал: монотонный (наилучший), апериодический, колебательный (для некоторых систем недопустим).

Методы оценки качества переходного процесса АСР.

Прямые методы: показатели качества определяются по кривой переходного процесса, снятой с объекта управления в опыте или рассчитанной по модели.

Показатели качества:

Время регулирования. В статической системе регулируемый параметр достигает заданного значения за бесконечное  время, на практике оперируют конечными значениями времени регулирования, которое определяется как время, за которое рассогласование достигает определённого значения и не превышает его в последствии, то есть .

обычно принимают 5%, но для точных систем управления она может быть и меньше. Иногда в качестве зоны берётся зона нечувствительности АСР (особенно для релейных систем).

Перерегулирование: ,%. Для большинства АСР , но есть объекты не допускающие перерегулирования.

Колебательность: количество min или max за время регулирования.

Прямые методы оценки просты, наглядны и точны, однако требуют опыта.

Косвенные методы:

Корневой – о качестве переходного процесса судят по корням числителя и знаменателя передаточной функции замкнутой системы. Корни числителя называются "нулями", а корни знаменателя – "полюсами". Влияние нулей на переходный процесс оценить очень тяжело, поэтому в основном оценку ведут по полюсам.

Если корни вещественные, то , а корни лежат на оси –Re.

 

Выбирается ближайший к мнимой оси корень, как наиболее сильно влияющий на время регулирования. Тогда , где - зона в которую должен войти переходный процесс. Если =0,05, то .

Если имеются комплексно сопряжённые полюса, тогда , а . Берутся также ближайшие к Im полюса, тогда верхняя оценка времени регулирования будет при .

Частотный – о характере переходного процесса судят по ВЧХ ЗС.

- по теореме Солодовникова.

  1.  монотонная, 2- невозрастающая, 3- возрастающая, 4- знакопеременная.

Характерные точки:

П  - частота пропускания, частота при которой P() входит в 10% зону.

0 - частота знакопостоянства, частота при которой P() пересекает прямую 0,1 и входит в 10% зону. (Для 1-3 ВЧХ П=0).

По виду ВЧХ сформулированы ряд правил:

  1.  Начальное значение ВЧХ есть установившееся значение ПХ.

Р(0)=lim t h(t)

  1.  Начальное значение ПХ есть установившееся значение ВЧХ.

h(0)= lim  P()

  1.  Монотонным ВЧХ соответствуют монотонные переходные процессы.

.Чем шире полоса пропускания, тем быстрее заканчивается ПП.

  1.  Невозрастающим ВЧХ соответствуют переходные процессы с , но чем больше полоса пропускания, тем больше .

  1.  Если одна ВЧХ повторяет другую в другом масштабе частот (P1()=P2(n)), то переходные процессы повторяют друг друга с учётом масштаба времени (y1(t)=y2(t/n)).

  1.  Для возрастающих и знакопеременных ВЧХ , если  - не корректно.

  1.  Можно определить время переходного процесса:

Можно оценить колебательность переходного процесса по АЧХ:

- удовлетворительная колебательность, К – частота колебаний переходного процесса.

Приведенные свойства ВЧХ дают приближенную оценку качества регулирования, не производя при этом существенных расчетов. Косвенные методы оценки важны в инженерной практике для предварительной оценки правильности выполнения этапов проектирования и позволяют по совокупности признаков качества своевременно принять меры для изменения структуры и параметров разрабатываемой системы регулирования.

Интегральные методы.

Часто у АСР могут быть переходные процессы с одинаковыми показателями качества, однако необходимо оценить, какой переходный процесс лучше. Интегральные методы оценки качества как раз и разработаны для этого. Все критерии основаны на рассогласовании .

1. . На практике пределы интегрирования ограничиваются значением t или 2t. J1 – площадь между линией y и кривой переходного процесса. Критерий не работает для систем с перерегулированием, он корректен только для монотонных переходных процессов.

2. . Может быть использован для систем с колебательностью. Эта оценка также хороша тем, что позволяет в замкнутой форме выразить зависимость J2 от параметров системы.

3. .

4. . Вводя интегральную оценку по производной косвенно учитывают энергозатраты, то есть, чем меньше скорость изменения y(t), тем лучше система. Весовой коэффициент k выбирается из практических соображений. .

5. . Сейчас этот способ оценки распространяется в вычислительной технике. При нём сокращается время tp.

6. . Где U(t) – управляющее воздействие. Используется когда необходимо минимизировать энергозатраты на управление, особенно расход топлива. k - весовой коэффициент, определяет, на сколько важны энергозатраты.

Собственно интегральные методы оценки качества никакого физического смысла не имеют – это число и, чтобы его использовать, его надо сравнить с другим числом.

Понятие об оптимальном управлении.

Пусть имеется система управления с ПИД регулятором. Система позволяющая получить наилучшие показатели качества в каком-либо смысле называется оптимальной и реализует оптимальное управление. В системе с ПИД регулятором можно формировать различные переходные процессы в зависимости от параметров регулятора.

Пусть имеется сочетание параметров k, Tи, Тд, обеспечивающие устойчивость АСР. Имеется математическая модель неизменной части (объект управления). Выбирается критерий оптимальности или целевая функция – это может быть один из интегральных методов оценки качества или иной критерий. Кроме того, как правило, имеются ограничения физического характера или граничные условия, налагаемые на различные параметры и воздействия в системе.

Для построения оптимальной СУ при параметрах регулятора, обеспечивающих устойчивость, определяют критерий оптимальности, изменяют один или несколько параметров регулятора и снова вычисляют критерий. Операции повторяются для нахождения минимума целевой функции. Параметры регулятора, обеспечивающие минимум (реже максимум) критерия оптимальности соответствуют оптимальному управлению. В рассмотрении предполагается, что параметры оптимизации независимы.

Для оптимизации по нескольким параметрам одновременно или многомерной оптимизации используются различные методы:

  1.  Метод координатного спуска;
  2.  Метод градиентного спуска;
  3.  Симплекс метод.

На практике обычно пользуются несколькими методами для проверки.

Если в АСР каждый переходный процесс является оптимальным, то систему управления называют равномерно - оптимальной.

Когда нельзя обеспечить оптимальность каждого переходного процесса из-за случайных внешних воздействий, то можно построить статически – оптимальные системы, обеспечивающую оптимальное управление в среднем.

Есть ещё минимаксно - оптимальные системы, то есть лучшую из всех наихудших по заданному критерию, когда нет априорных сведений о вероятностных распределениях воздействий.

Оптимальную систему можно построить, но в процессе эксплуатации меняются как параметры объекта управления, так и параметры регулятора, поэтому с течением времени система перестаёт быть оптимальной. Поэтому желательно иметь систему управления, контролирующую изменение параметров и подстраивающуюся, приспосабливающуюся к текущему состоянию.

Такие системы управления называются адаптивными и имеют следующие особенности:

  •  Получение и анализ текущей информации об объекте управления (идентификация);
  •  Решение задачи синтеза системы адаптации по заданному критерию качества;
  •  Реализация процесса контролируемого изменения свойств системы управления.

Для выполнения этих функций в основной контур управления вводится вычислительное устройство, включающее три взаимодействующих блока – анализатор, синтезатор и исполнительное устройство решающее соответствующие задачи.

По диапазону адаптивных свойств выделяют три основных класса адаптивных систем:

  •  Самонастраивающиеся системы, обеспечивают контролируемое изменение параметров и управляющих воздействий;
  •  Самоорганизующиеся системы, обеспечивают контролируемое изменение структуры и возможное изменение параметров и управляющих воздействий;
  •  Самообучающиеся системы, в которых обеспечивается контролируемое изменение структуры, параметров, алгоритмов управления с использованием опыта функционирования.

БА- блок адаптации, А- анализатор, С- синтезатор, ИУ- исполнительное устройство.


 

А также другие работы, которые могут Вас заинтересовать

26656. ЭКОЛОГИЧЕСКИЙ ПОТЕНЦИAЛ И ЕГО РAЗРУШЕНИЕ 113.5 KB
  Чем большим потенциaлом устойчивости облaдaют экосистемы и тем больше чистого водухa воды пищи достaнется в конечном счете человеку. ПАДЕНИЯ УРОВНЯ АРАЛА Непосредственная физическая причина снижения уровня Аральского моря это нарушение водного баланса водоема: превышение расхода воды над приходом. Важную роль сыграли дополнительные потери воды на испарение с поверхности многочисленных водохранилищ построенных в бассейнах Амударьи и Сырдарьи. На сокращении стока Амударьи и Сырдарьи сказались также нерациональное и неэкономное использование...
26657. Актуальные экологические проблемы современности 84 KB
  Тщательное изучение последствий изменения климата приводит к выводу что развивающиеся страны окажутся наиболее уязвимы. Исследование опубликованное Кембриджским Университетом под названием Изменения климата: воздействие на разные страны и их сопричастность представлено учеными из 30 стран в т. Хотя влияние изменения климата не везде одинаково приведенные в исследовании примеры демонстрируют насколько драматичным оно может оказаться для ряда стран.
26658. ЛАНДШАФТ АНТРОПОГЕННЫЙ 43 KB
  Anthropos человек Genes рождающий рожденный Антропогенный ландшафт географический ландшафт: созданный в результате целенаправленной деятельности человека; или возникший в ходе непреднамеренного изменения природного ландшафта. К антропогенным ландшафтам относятся природнопроизводственные комплексы городские поселения и т. В современной ландшафтной архитектуре выделяют понятия природного и антропогенного ландшафта. Они весьма чутки к изменениям вызываемым процессом урбанизации промышленного и сельскохозяйственного освоения...
26659. Аральское море 70 KB
  Одновременно значительно сократились объем воды в Арале с 1093 до 330 км3 то есть на 763 км3 или более чем в три раза и площадь водоема с 68 500 до 36 500 км2 то есть на 32 000 км2 или почти вдвое табл. Пролив Берга соединявший ранее Малое и Большое моря превратился в небольшой но достаточно длинный проток по которому излишки воды из Малого сбрасывались в Большое море. О НЕПОСРЕДСТВЕННОЙ ПРИЧИНЕ ПАДЕНИЯ УРОВНЯ АРАЛА Непосредственная физическая причина снижения уровня Аральского моря это нарушение водного баланса водоема:...
26660. Биосфе́ра 84.5 KB
  Масса живого вещества сравнительно мала и оценивается величиной 24361012 т в сухом весе и составляет менее 10−6 массы других оболочек Земли. Эту геологическую роль живого вещества можно представить себе по месторождениям угля нефти карбонатных пород и т. Рассеянные атомы непрерывно создающиеся из всякого рода земного вещества под влиянием космических излучений. Биологическое разнообразие основа формирования устойчивых биогеохимических циклов вещества и энергии в биосфере Земле.
26661. Критическое состояние ландшафта 38.5 KB
  Ландшафт от нем. Солнцева ландшафт характеризуется единством геологической платформы климата и истории развития. Ландшафт абиогенный Ландшафт сформировавшийся без существенного влияния живого вещества.
26662. Высотная поясность, высотная зональность 43 KB
  Высотный пояс высотная ландшафтная зона единица высотнозонального расчленения ландшафтов в горах. Высотный пояс образует полосу сравнительно однородную по природным условиям часто прерывистую Характеристика явления Высотная поясность объясняется изменением климата с высотой: на 1 км подъёма температура воздуха снижается в среднем на 6 C уменьшается давление воздуха его запылённость возрастает интенсивность солнечной радиации до высоты 2 3 км увеличивается облачность и количество осадков. По мере нарастания высоты происходит смена...
26663. Географическая оболочка 31.5 KB
  Взаимное проникновение друг в друга слагающих географическую оболочку Земли газовой водной живой и минеральных оболочек и их взаимодействие определяет целостность географической оболочки. Знание закона целостности географической оболочки имеет большое практическое значение. Изменение одной из оболочек географической оболочки отражается и на всех других. Он характеризовался ведущей ролью живых существ в развитии и формировании географической оболочки.
26664. Географи́ческая оболо́чка 45 KB
  Земная кора Земная кора это верхняя часть твёрдой земли. Температура убывает с ростом высоты со средним вертикальным градиентом 065 100 м За нормальные условия у поверхности Земли приняты: плотность 12 кг м3 барометрическое давление 10134 кПа температура плюс 20 C и относительная влажность 50 . Гидросфера Гидросфера совокупность всех водных запасов Земли.