3982

Аналитическая геометрия в пространстве

Лекция

Математика и математический анализ

Лекция Аналитическая геометрия в пространстве. Плоскость в пространстве Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору Пусть в пространстве OXYZ даны точка M0(x0, y0, z0) и ненулевой вектор n (A ...

Русский

2012-11-10

305.5 KB

39 чел.

Лекция 31

Глава 3. Аналитическая геометрия в пространстве

3.1. Плоскость в пространстве

Уравнение плоскости, проходящей через данную точку перпендикулярно

данному вектору

Пусть в пространстве OXYZ даны точка M0(x0, y0, z0) и ненулевой вектор

n ( A; B; C ) . Составим уравнение плоскости, проходящей через точку M0

перпендикулярно вектору.

Возьмем произвольную точку M ( x; y; z) на плоскости, тогда векторы n и M 0 M

взаимно перпендикулярны и их скалярное произведение равно нулю: (n, M o M ) 0 .

Отсюда получим уравнение

A( x

Вектор n

x0 ) B( y

y0 ) C ( z

z0 )

0.

( A; B; C ) называется нормальным вектором плоскости.

Общее уравнение плоскости

Общим уравнением плоскости называется уравнение первой степени относительно

переменных x, y и z :

Ax By Cz D 0 .

Уравнение плоскости, проходящей через три данные точки

Пусть в пространстве OXYZ даны

M 3 ( x3 ; y3 ; z3 )

три точки M1 ( x1; y1; z1 ) , M 2 ( x2 ; y2 ; z21) и

, не лежащие на одной прямой. Возьмем произвольную точку M ( x; y; z) на

плоскости, тогда векторы M 1M , M 1M 2 и M1M 3 расположены в одной плоскости, они

компланарны и их смешанное произведение равно нулю: M1M M1M 2 M1M 3

0 . Отсюда

получим уравнение плоскости

x x1

x2 x1

y y1

y2 y1

z z1

z2 z1

x3

y3

z3

x1

y1

0.

z1

Уравнение плоскости в отрезках

В пространстве OXYZ возьмем

M 3 (0;0; c)

три точки M1 (a;0;0) , M 2 (0; b;0) и

.

Подставим координаты этих точек в уравнение плоскости, проходящей через три данные

точки:

x a y z

a b 0

a

0 c

0.


Отсюда получим уравнение

bcx acy abz abc 0

или

x

a

y

b

z

c

1.

Нормальное уравнение плоскости

Уравнение

x cos

где

, ,

y cos

p 0,

z cos

- углы между нормальным вектором плоскости и координатными осями OX,

OY,OZ соответственно, p – длина перпендикуляра, опущенного из начала координат на

плоскость, называется нормальным уравнением плоскости.

Чтобы привести общее уравнение плоскости

Ax By Cz D 0

к нормальному необходимо умножить его на множитель

1

A

2

B2

C2

,

где знак выбирается противоположным знаку коэффициента D.

3.2. Основные задачи в пространстве

Угол между плоскостями

В пространстве OXYZ заданы две плоскости

и

:

A1 x B1 y C1 z D1

0,

A2 x B2 y C2 z

0.

Угол между этими плоскостями равен углу

n1

( A1; B1; C1 ) и n2

D2

между их нормальными векторами

( A2 ; B2 ; C2 ) . Следовательно,

cos

A1 A2

2

1

A

2

1

B

B1 B2 C1C2

C12

2

A2

2

2

B2 C2

.

Из этой формулы следуют условия перпендикулярности и параллельности

плоскостей.

Если плоскости

векторы n1

и

( A1; B1; C1 ) и n2

перпендикулярны, то перпендикулярны и их нормальные

( A2 ; B2 ; C2 ) . Значит, скалярное произведение n1 , n2

A1 A2 B1B2 C1C2 0 .

Это равенство есть необходимое и достаточное условие перпендикулярности двух

плоскостей.

0 или


Если плоскости

n1 ( A1; B1; C1 ) и n2

пропорциональны:

и

параллельны, то параллельны и их нормальные вектора

( A2 ; B2 ; C2 ) . Следовательно, координаты этих векторов должны быть

A1 B1 C1

.

A2 B2 C2

Это равенство есть необходимое и достаточное условие параллельности двух плоскостей.

Расстояние от точки до плоскости

Пусть в пространстве OXYZ заданы точка M 0( x0 , y0 , z0 ) и плоскость

Ax By Cz D 0 . Расстояние от точки до плоскости вычисляется по формуле

Ax0 By 0 Cz 0 D

.

d

A2 B 2 C 2

►Пример 1. Составить уравнение плоскости, которая проходит через точки

M 1 (1;1;1), M 2 (1;0;0) и M 3 (0;0;1) .

Пусть M ( x; y; z) - произвольная точка плоскости, тогда векторы M 1M ,

M 1M 2 и M1M 3 расположены в этой плоскости, они компланарны и их смешанное

произведение равно нулю: M1M M1M 2 M1M 3

0 . Отсюда получим уравнение плоскости

x 1 y 1 z 1

0

1

1

1

1

0

0

или

y z 1 0.

x

►Пример 2. Составить уравнение плоскости, проходящей через точки

M 1 (1;0; 1), M 2 (0;1;1) ) и параллельной вектору s

(1;1;0) .

Если M ( x; y; z) - произвольная точка плоскости, то векторы M 1M , M 1M 2 и

s компланарны. Следовательно,

x 1 y

1 2

1

0

z 1

2

0

0

или

x

y z

0.

►Пример 3. Составить уравнение плоскости, проходящей через точку M 1 (0; 1;1) и

линию пресечения плоскостей x 2 y 3z 4

0и x

y 6z 8 0 .

Линия пересечения двух плоскостей - прямая. На этой прямой найдем две точки.

Для этого решим систему из двух уравнений:


x 2 y 3 z 4 0,

x y 6 z 8 0.

Для еѐ решения применим метод Гаусса:

1

2 3 4

1 1

6

8

~

1

2 3 4

0 3

9 12

~

1

2 3 4

0 1

3 4

.

Система имеет бесконечно много решений, еѐ общее решение:

x

3 p 4, y

3 p 4, z

p, p

R.

Два частных решения, две точки M 2 ( 4; 4;0) и M 3 ( 1; 1;1) .

Теперь необходимо записать уравнение плоскости, проходящей через три точки

M 1 (0; 1;1) , M 2 ( 4; 4;0) и M 3 ( 1; 1;1) :

x

4

1

y 1 z 1

3

1

0

0

0

или

y 3z 4 0 .

3.3. Прямая в пространстве

Общее уравнение прямой

Прямую в пространстве можно определить как линию пересечения двух

непараллельных плоскостей. Пусть заданы две плоскости A1x B1 y C1z

A2 x B2 y C2 z

D2

D1

0 . Если нормальные векторы этих плоскостей не коллинеарные, то

система

A1 x B1 y C1 z D1 0,

A2 x B2 y C 2 z D2 0

определяет прямую.

Параметрическое уравнение прямой в пространстве

Зададим прямую l в пространстве при помощи точки M 0 ( x0 ; y0 ; z 0 ) этой прямой и

ненулевого вектора s (m; n; p ) параллельного прямой l. Эти условия однозначно

определяют прямую, так как через точку параллельно вектору можно провести только

одну прямую. Вектор s (m; n; p ) называется направляющим вектором прямой. Пусть

M ( x; y; z) - произвольная точка прямой l (см. рис. 1).


Z

M

l

M0

s

r

r0

O

Y

X

Рис. 1

Тогда вектор M 0M коллинеарен вектору s , следовательно,

M 0M

R.

t s, t

Три вектора r 0 , r и M 0M связаны соотношением

r

M 0M ,

r0

поэтому справедливо равенство

r r 0 t s, t R .

Полученное равенство называется векторным уравнение прямой. Здесь множитель t

может принимать любые числовые значения в зависимости от положения точки M на

прямой.

Если векторное равенство записать в координатной форме, то получим

параметрическое уравнение прямой:

x x0 mt ,

y y0 nt, t R,

z z0 pt,

где скалярный множитель t называется параметром.

Примеры

1. Написать уравнение прямой l, проходящей через точку M0(1,-1,2)

перпендикулярно плоскости 2x – 3y + z + 2 = 0.

Вектор n ( 2; 3;1) перпендикулярен данной плоскости и, значит, параллелен

прямой l. Теперь параметрическое уравнение прямой имеет вид

x

y

1 2t ,

1 3t ,

z

2 t.

2. Найти значения m, при которых прямая


x

1 mt ,

y

2 t,

z

t

лежит в плоскости 2x – y + z = 0.

Прямая лежит в плоскости, если координаты всех точек прямой удовлетворяют

уравнению плоскости. Отсюда следует, что после подстановки x, y и z из уравнения

прямой в уравнение данной плоскости, получим равенство

2 (1+mt)–(2–t)+t = 0,

которое должно выполняться при всех значениях t. Полученное равенство справедливо

при всех t только тогда, когда m =-1.

Коническое уравнение прямой

Пусть s

(m; n; p ) - направляющий вектор прямой и точка M 0 ( x0 ; y0 ; z 0 ) лежит на

этой прямой. Если M ( x; y; z) - произвольная точка прямой, то вектор MM 0 коллинеарен

вектору s и координаты этих векторов пропорциональны:

x x0

m

y

y0

z

n

z0

p

.

Полученное уравнение называется каноническим уравнением прямой.

Уравнение прямой проходящей через две точки

Пусть прямая проходит через две точки M1 ( x1 , y1 , z1 ) и M 2 ( x2 , y2 , z2 ) . Тогда вектор

M 1M 2

x2

x1; y2

y1; z2

z1

возьмем в качестве направляющего вектора прямой и из канонического уравнения прямой

получим

x x1

x2 x1

y y1

y2 y1

z z1

.

z 2 z1

Это уравнение называется уравнением прямой проходящей через две точки.

Угол между двумя прямыми, условие параллельности и перпендикулярности

прямых

Две прямые заданы уравнениями

x x1

l1

y

y1

n1

z z1

x x2

и

p1

l2

y

y2

n2

z z2

.

p2

Угол между прямыми равен углу между их направляющими векторами s1

s2

(m2 ; n2 ; p 2 ) :

(m1; n1; p1 ) и


cos

m1m2

2

1

n1n2

2

1

m

2

1

n

p1 p2

2

2

p

2

n2

m

2

p2

Условие параллельности и перпендикулярности прямых равносильно коллинеарности и

перпендикулярности направляющих векторов этих прямых.

Если прямые перпендикулярны, то перпендикулярны и их нормальные векторы

s1

(m1; n1; p1 ) и s 2

(m2 ; n2 ; p 2 ) . Значит, скалярное произведение

m1m2 n1n2 p1 p2 0 .

Если прямые параллельны, то параллельны и их нормальные вектора,

следовательно, координаты этих векторов должны быть пропорциональны:

m1 n1 p1

.

m2 n2 p2

3.4. Прямая и плоскость в пространстве

В пространстве заданы прямая и плоскость своими уравнениями

x x0

m

y

y0

z

z0

n

p

,

Ax By Cz D 0 .

Угол между прямой и плоскостью

Угол между прямой и плоскостью вычисляется по формуле

sin

Am Bn Cp

A2

B2

C2

m2

n2

p2

Прямая и плоскость перпендикулярны тогда и только тогда, когда направляющий вектор

прямой s

(m; n; p ) и нормальный вектор плоскости n

A

B

m

n

( A; B; C ) коллинеарны, т.е.

C

p .

Прямая и плоскость параллельны, когда эти векторы перпендикулярны, т.е.

Am Bn Cp

0.

Точка пересечения прямой с плоскостью

Для того, чтобы найти точку пересечения прямой и плоскости необходимо решить

систему двух уравнений

x x0

m

y

y0

n

z

z0

p

Ax By Cz D 0 .

,


Уравнение прямой запишем в параметрическом виде:

x

x0

mt ,

y

y0

nt,

z

z0

pt.

После подстановки получим

A( x0

mt ) B( y0

nt) C ( z0

pt) D

0.

Отсюда

Ax0 By0 Cz0 D

.

Am Bn Cp

t

Далее необходимо вычислить координаты точки.

3.5. Поверхности второго порядка

Сфера

( x x1 ) 2

y1 ) 2

(y

( z z1 ) 2

R2 .

Цилиндрические поверхности

Поверхности, составленные из всех прямых, пересекающих данную

линию l и параллельных данной

прямой, называются цилиндрическими

поверхностями.

x2

a2

y2

b2

1

x2

a2

y2

b2

1 - гиперболический цилиндр

y2

2 px - параболический цилиндр

- эллиптический цилиндр

Конические поверхности

Поверхность составленная из всех прямых пересекающих данную

линию l , и проходящих через данную точку p , называются конической

поверхностью.

x2

Уравнение конической поверхности: 2

a

y2

b2

z2

c2

Эллипсоид

x2

a2

Гиперболоид

y2

b2

z2

c2

1 - эллипсоид

0.


x2

a2

y2

b2

z2

c2

1 - однополостный гиперболоид

x2

a2

y2

b2

z2

c2

1 - двуполостный гиперболоид

Параболоид

2z

2z

x2

p

x2

p

y2

- эллиптический параболоид

q

y2

- гиперболический параболоид.

q



 

А также другие работы, которые могут Вас заинтересовать

23092. Рівняння максвела як узагальнення експериментальних фактів 70.5 KB
  Рівняння максвела як узагальнення експериментальних фактів. Рівняння Максвела сформульовані на основі узагальнення емпіричних законів електричних та магнітних явищ. Ці рівняння звязують величини що характеризують електромагнітне поле з його джерелами та з розподілами в просторі електричних зарядів та струмів. Перше рівняння максвела є узагальненням емпіричного закону БіоСавара.
23093. Магнітні властивості речовини 36 KB
  Пара та діа магнетиками називаються речовини які за відсутності магнітного поля завжди не намагнічені і які характеризуються однозначною залежністю між вектором намагнічування I и напруженістю статичного магнітного поля Н. Зокрема у слабких магнітних полях ця залежність лінійна: причому для парамагнетиків χ 0 а для діамагнетиків χ 0. Феромагнетиками називаються тверді тіла які можуть мати спонтанну намагніченість тобто намагнічені вже при відсутності магнітного поля. Магнітна сприйнятливість феромагнетику є функцією напруженості...
23094. Рівняння для електромагнітних потенціалів, їх розв’язок у вигляді запізнювального потенціалу 91.5 KB
  Рівняння для електромагнітних потенціалів їх розвязок у вигляді запізнювального потенціалу. Система рння Максвелла: Перше рівняння М. Підставивши у 3 рння М. Використовуючи те що потенціали вибираються не однозначно рння не зміняться якщо зробити заміну це калібрувальна інваріантність.
23095. Fast Ethernet и 100VG-AnyLAN как развитие технологии Ethernet 151 KB
  В результате поисков и исследований специалисты разделились на два лагеря, что в конце концов привело к появлению двух новых технологий — Fast Ethernet и 100VG-AnyLAN. Они отличаются степенью преемственности с классическим Ethernet.
23096. Розсіяння електромагнітних хвиль зарядами. Формула Томсона 76.5 KB
  Розсіяння електромагнітних хвиль зарядами. Цей рух в свою чергу супроводжується випромінюванням в усі боки: відбувається розсіяння початкової хвилі. Нехай енергія яка випромінюється системою в тілесний кут в 1с при тому що на неї падає хвиля з вектором Пойнтінга Тоді переріз розсіяння риска означає усереднення по часу Розглянемо розсіяння що проводиться одним нерухомим зарядом вільним зарядом. отримана зарядом швидкість припускається малою 2 1 в 2: одиничний вектор в напрямку розсіяння.
23097. Квантування електромагнітного поля. Фотони 87 KB
  Квантування електромагнітного поля. Ейнштейн першим звернув на це увагу і намагався теоретично обґрунтувати дискретність електромагнітного випромінювання. Ейнштейн показав що ймовірність мати енергію для електромагнітного випромінювання буде: . Для електромагнітного випромінювання: .
23098. Поширення світла в анізотропних середовищах. Дисперсія і поглинання 466 KB
  В анізотропному середовищі спостерігається подвійне заломлення променів зумовлене наявністю в них двох показників заломлення один з яких не залежить від напрямку поширення хвилі і відповідає одній поляризації а другий залежить від напрямку поширення і пов`язаний з іншою поляризацією. Введемо для ізотропного середовища показник заломлення. Для хвилі що поширюється в напрямку x коливання відбуваються в напрямку z то показник заломлення більше в напрямку z ніж для коливань в напрямку y. z напрямок при якому показники...
23099. Явище обертання площини поляризації падаючого світла в речовинах 96 KB
  Явище обертання площини поляризації падаючого світла в речовинах. Якщо лінійно поляризоване світло проходить через плоскопаралельний шар речовини то в деяких випадках площина поляризації світла виявляється повернутою відносно свого вихідного положення. Це явище називається обертанням площини поляризації або оптичною активністю. Кут поворота площини поляризації залежить від довжини хвилі.
23100. Квантування енергії лінійного гармонічного осцилятора 202.5 KB
  Тоді гамільтоніан для такої системи буде: Класичний гармонічний осцилятор має розвязки: і де А амплітуда ω частота δ початкова фаза коливань. Перетворимо це рівняння введемо безрозмірні величини та З урахуванням останнього рівняння Шредігера перепишеться як 1 Асимптотична поведінка розвязку рівняння 1 при х→∞: Тоді 2 причому uzобмежена на нескінченності. Шукаючи розвязок у вигляді степеневого ряду знаходимо рекурентну формулу для коефіцієнтів ряду: Розвязки можуть бути або парними або непарними тобто або...