3982

Аналитическая геометрия в пространстве

Лекция

Математика и математический анализ

Лекция Аналитическая геометрия в пространстве. Плоскость в пространстве Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору Пусть в пространстве OXYZ даны точка M0(x0, y0, z0) и ненулевой вектор n (A ...

Русский

2012-11-10

305.5 KB

39 чел.

Лекция 31

Глава 3. Аналитическая геометрия в пространстве

3.1. Плоскость в пространстве

Уравнение плоскости, проходящей через данную точку перпендикулярно

данному вектору

Пусть в пространстве OXYZ даны точка M0(x0, y0, z0) и ненулевой вектор

n ( A; B; C ) . Составим уравнение плоскости, проходящей через точку M0

перпендикулярно вектору.

Возьмем произвольную точку M ( x; y; z) на плоскости, тогда векторы n и M 0 M

взаимно перпендикулярны и их скалярное произведение равно нулю: (n, M o M ) 0 .

Отсюда получим уравнение

A( x

Вектор n

x0 ) B( y

y0 ) C ( z

z0 )

0.

( A; B; C ) называется нормальным вектором плоскости.

Общее уравнение плоскости

Общим уравнением плоскости называется уравнение первой степени относительно

переменных x, y и z :

Ax By Cz D 0 .

Уравнение плоскости, проходящей через три данные точки

Пусть в пространстве OXYZ даны

M 3 ( x3 ; y3 ; z3 )

три точки M1 ( x1; y1; z1 ) , M 2 ( x2 ; y2 ; z21) и

, не лежащие на одной прямой. Возьмем произвольную точку M ( x; y; z) на

плоскости, тогда векторы M 1M , M 1M 2 и M1M 3 расположены в одной плоскости, они

компланарны и их смешанное произведение равно нулю: M1M M1M 2 M1M 3

0 . Отсюда

получим уравнение плоскости

x x1

x2 x1

y y1

y2 y1

z z1

z2 z1

x3

y3

z3

x1

y1

0.

z1

Уравнение плоскости в отрезках

В пространстве OXYZ возьмем

M 3 (0;0; c)

три точки M1 (a;0;0) , M 2 (0; b;0) и

.

Подставим координаты этих точек в уравнение плоскости, проходящей через три данные

точки:

x a y z

a b 0

a

0 c

0.


Отсюда получим уравнение

bcx acy abz abc 0

или

x

a

y

b

z

c

1.

Нормальное уравнение плоскости

Уравнение

x cos

где

, ,

y cos

p 0,

z cos

- углы между нормальным вектором плоскости и координатными осями OX,

OY,OZ соответственно, p – длина перпендикуляра, опущенного из начала координат на

плоскость, называется нормальным уравнением плоскости.

Чтобы привести общее уравнение плоскости

Ax By Cz D 0

к нормальному необходимо умножить его на множитель

1

A

2

B2

C2

,

где знак выбирается противоположным знаку коэффициента D.

3.2. Основные задачи в пространстве

Угол между плоскостями

В пространстве OXYZ заданы две плоскости

и

:

A1 x B1 y C1 z D1

0,

A2 x B2 y C2 z

0.

Угол между этими плоскостями равен углу

n1

( A1; B1; C1 ) и n2

D2

между их нормальными векторами

( A2 ; B2 ; C2 ) . Следовательно,

cos

A1 A2

2

1

A

2

1

B

B1 B2 C1C2

C12

2

A2

2

2

B2 C2

.

Из этой формулы следуют условия перпендикулярности и параллельности

плоскостей.

Если плоскости

векторы n1

и

( A1; B1; C1 ) и n2

перпендикулярны, то перпендикулярны и их нормальные

( A2 ; B2 ; C2 ) . Значит, скалярное произведение n1 , n2

A1 A2 B1B2 C1C2 0 .

Это равенство есть необходимое и достаточное условие перпендикулярности двух

плоскостей.

0 или


Если плоскости

n1 ( A1; B1; C1 ) и n2

пропорциональны:

и

параллельны, то параллельны и их нормальные вектора

( A2 ; B2 ; C2 ) . Следовательно, координаты этих векторов должны быть

A1 B1 C1

.

A2 B2 C2

Это равенство есть необходимое и достаточное условие параллельности двух плоскостей.

Расстояние от точки до плоскости

Пусть в пространстве OXYZ заданы точка M 0( x0 , y0 , z0 ) и плоскость

Ax By Cz D 0 . Расстояние от точки до плоскости вычисляется по формуле

Ax0 By 0 Cz 0 D

.

d

A2 B 2 C 2

►Пример 1. Составить уравнение плоскости, которая проходит через точки

M 1 (1;1;1), M 2 (1;0;0) и M 3 (0;0;1) .

Пусть M ( x; y; z) - произвольная точка плоскости, тогда векторы M 1M ,

M 1M 2 и M1M 3 расположены в этой плоскости, они компланарны и их смешанное

произведение равно нулю: M1M M1M 2 M1M 3

0 . Отсюда получим уравнение плоскости

x 1 y 1 z 1

0

1

1

1

1

0

0

или

y z 1 0.

x

►Пример 2. Составить уравнение плоскости, проходящей через точки

M 1 (1;0; 1), M 2 (0;1;1) ) и параллельной вектору s

(1;1;0) .

Если M ( x; y; z) - произвольная точка плоскости, то векторы M 1M , M 1M 2 и

s компланарны. Следовательно,

x 1 y

1 2

1

0

z 1

2

0

0

или

x

y z

0.

►Пример 3. Составить уравнение плоскости, проходящей через точку M 1 (0; 1;1) и

линию пресечения плоскостей x 2 y 3z 4

0и x

y 6z 8 0 .

Линия пересечения двух плоскостей - прямая. На этой прямой найдем две точки.

Для этого решим систему из двух уравнений:


x 2 y 3 z 4 0,

x y 6 z 8 0.

Для еѐ решения применим метод Гаусса:

1

2 3 4

1 1

6

8

~

1

2 3 4

0 3

9 12

~

1

2 3 4

0 1

3 4

.

Система имеет бесконечно много решений, еѐ общее решение:

x

3 p 4, y

3 p 4, z

p, p

R.

Два частных решения, две точки M 2 ( 4; 4;0) и M 3 ( 1; 1;1) .

Теперь необходимо записать уравнение плоскости, проходящей через три точки

M 1 (0; 1;1) , M 2 ( 4; 4;0) и M 3 ( 1; 1;1) :

x

4

1

y 1 z 1

3

1

0

0

0

или

y 3z 4 0 .

3.3. Прямая в пространстве

Общее уравнение прямой

Прямую в пространстве можно определить как линию пересечения двух

непараллельных плоскостей. Пусть заданы две плоскости A1x B1 y C1z

A2 x B2 y C2 z

D2

D1

0 . Если нормальные векторы этих плоскостей не коллинеарные, то

система

A1 x B1 y C1 z D1 0,

A2 x B2 y C 2 z D2 0

определяет прямую.

Параметрическое уравнение прямой в пространстве

Зададим прямую l в пространстве при помощи точки M 0 ( x0 ; y0 ; z 0 ) этой прямой и

ненулевого вектора s (m; n; p ) параллельного прямой l. Эти условия однозначно

определяют прямую, так как через точку параллельно вектору можно провести только

одну прямую. Вектор s (m; n; p ) называется направляющим вектором прямой. Пусть

M ( x; y; z) - произвольная точка прямой l (см. рис. 1).


Z

M

l

M0

s

r

r0

O

Y

X

Рис. 1

Тогда вектор M 0M коллинеарен вектору s , следовательно,

M 0M

R.

t s, t

Три вектора r 0 , r и M 0M связаны соотношением

r

M 0M ,

r0

поэтому справедливо равенство

r r 0 t s, t R .

Полученное равенство называется векторным уравнение прямой. Здесь множитель t

может принимать любые числовые значения в зависимости от положения точки M на

прямой.

Если векторное равенство записать в координатной форме, то получим

параметрическое уравнение прямой:

x x0 mt ,

y y0 nt, t R,

z z0 pt,

где скалярный множитель t называется параметром.

Примеры

1. Написать уравнение прямой l, проходящей через точку M0(1,-1,2)

перпендикулярно плоскости 2x – 3y + z + 2 = 0.

Вектор n ( 2; 3;1) перпендикулярен данной плоскости и, значит, параллелен

прямой l. Теперь параметрическое уравнение прямой имеет вид

x

y

1 2t ,

1 3t ,

z

2 t.

2. Найти значения m, при которых прямая


x

1 mt ,

y

2 t,

z

t

лежит в плоскости 2x – y + z = 0.

Прямая лежит в плоскости, если координаты всех точек прямой удовлетворяют

уравнению плоскости. Отсюда следует, что после подстановки x, y и z из уравнения

прямой в уравнение данной плоскости, получим равенство

2 (1+mt)–(2–t)+t = 0,

которое должно выполняться при всех значениях t. Полученное равенство справедливо

при всех t только тогда, когда m =-1.

Коническое уравнение прямой

Пусть s

(m; n; p ) - направляющий вектор прямой и точка M 0 ( x0 ; y0 ; z 0 ) лежит на

этой прямой. Если M ( x; y; z) - произвольная точка прямой, то вектор MM 0 коллинеарен

вектору s и координаты этих векторов пропорциональны:

x x0

m

y

y0

z

n

z0

p

.

Полученное уравнение называется каноническим уравнением прямой.

Уравнение прямой проходящей через две точки

Пусть прямая проходит через две точки M1 ( x1 , y1 , z1 ) и M 2 ( x2 , y2 , z2 ) . Тогда вектор

M 1M 2

x2

x1; y2

y1; z2

z1

возьмем в качестве направляющего вектора прямой и из канонического уравнения прямой

получим

x x1

x2 x1

y y1

y2 y1

z z1

.

z 2 z1

Это уравнение называется уравнением прямой проходящей через две точки.

Угол между двумя прямыми, условие параллельности и перпендикулярности

прямых

Две прямые заданы уравнениями

x x1

l1

y

y1

n1

z z1

x x2

и

p1

l2

y

y2

n2

z z2

.

p2

Угол между прямыми равен углу между их направляющими векторами s1

s2

(m2 ; n2 ; p 2 ) :

(m1; n1; p1 ) и


cos

m1m2

2

1

n1n2

2

1

m

2

1

n

p1 p2

2

2

p

2

n2

m

2

p2

Условие параллельности и перпендикулярности прямых равносильно коллинеарности и

перпендикулярности направляющих векторов этих прямых.

Если прямые перпендикулярны, то перпендикулярны и их нормальные векторы

s1

(m1; n1; p1 ) и s 2

(m2 ; n2 ; p 2 ) . Значит, скалярное произведение

m1m2 n1n2 p1 p2 0 .

Если прямые параллельны, то параллельны и их нормальные вектора,

следовательно, координаты этих векторов должны быть пропорциональны:

m1 n1 p1

.

m2 n2 p2

3.4. Прямая и плоскость в пространстве

В пространстве заданы прямая и плоскость своими уравнениями

x x0

m

y

y0

z

z0

n

p

,

Ax By Cz D 0 .

Угол между прямой и плоскостью

Угол между прямой и плоскостью вычисляется по формуле

sin

Am Bn Cp

A2

B2

C2

m2

n2

p2

Прямая и плоскость перпендикулярны тогда и только тогда, когда направляющий вектор

прямой s

(m; n; p ) и нормальный вектор плоскости n

A

B

m

n

( A; B; C ) коллинеарны, т.е.

C

p .

Прямая и плоскость параллельны, когда эти векторы перпендикулярны, т.е.

Am Bn Cp

0.

Точка пересечения прямой с плоскостью

Для того, чтобы найти точку пересечения прямой и плоскости необходимо решить

систему двух уравнений

x x0

m

y

y0

n

z

z0

p

Ax By Cz D 0 .

,


Уравнение прямой запишем в параметрическом виде:

x

x0

mt ,

y

y0

nt,

z

z0

pt.

После подстановки получим

A( x0

mt ) B( y0

nt) C ( z0

pt) D

0.

Отсюда

Ax0 By0 Cz0 D

.

Am Bn Cp

t

Далее необходимо вычислить координаты точки.

3.5. Поверхности второго порядка

Сфера

( x x1 ) 2

y1 ) 2

(y

( z z1 ) 2

R2 .

Цилиндрические поверхности

Поверхности, составленные из всех прямых, пересекающих данную

линию l и параллельных данной

прямой, называются цилиндрическими

поверхностями.

x2

a2

y2

b2

1

x2

a2

y2

b2

1 - гиперболический цилиндр

y2

2 px - параболический цилиндр

- эллиптический цилиндр

Конические поверхности

Поверхность составленная из всех прямых пересекающих данную

линию l , и проходящих через данную точку p , называются конической

поверхностью.

x2

Уравнение конической поверхности: 2

a

y2

b2

z2

c2

Эллипсоид

x2

a2

Гиперболоид

y2

b2

z2

c2

1 - эллипсоид

0.


x2

a2

y2

b2

z2

c2

1 - однополостный гиперболоид

x2

a2

y2

b2

z2

c2

1 - двуполостный гиперболоид

Параболоид

2z

2z

x2

p

x2

p

y2

- эллиптический параболоид

q

y2

- гиперболический параболоид.

q



 

А также другие работы, которые могут Вас заинтересовать

52528. Discover Britain 6.3 MB
  I want to draw your attention to the blackboard where the quotation from John Clarke is written: “He that travels far knows much”. I think these words can be the motor of our lesson. Let’s try to prove that Clarke was really right. What do you think about this quotation? How do you understand these words? What is your opinion?
52529. Дисидентський рух на Україні в період загострення кризи радянської системи (ІІ половина 60-х – початок 80-х років) 152 KB
  Стус Мета: освітня познайомити учнів із методами боротьби дисидентів проти тоталітарного режиму на Україні із формами переслідувань радянською владою інакодумців людей що викривали злочини СРСР і критикували політичний курс тоталітарного суспільства; розвиваюча зясувати які проблеми піднімали українські дисиденти у своїй діяльності яким чином поширювали інформацію про тоталітарну систему в СРСР простежити розвиток дисидентства на Україні від часу виникнення до його апогею...
52530. Дисидентський рух 60-х – 80-х рр. ХХ ст. в Україні 1.09 MB
  Мета: розкрити процес зародження дисидентського руху; зясувати мету та основні цілі дисидентів; ознайомити школярів із провідними учасниками дисидентського руху; розглянути причини придушення дисидентства; розвивати вміння синтезувати матеріал; критично оцінювати історичні події; виховувати в учнів почуття патріотизму інтерес та повагу до історичного минулого своєї країни до борців за незалежність України. Оголошення теми та завдань уроку План до уроку Зародження дисидентського руху Мета та основні цілі дисидентів Діяльність...
52532. Meet Disney Heroes 92.47 KB
  T: (divides pupils into two teams. Teams choose the names for them). Now I’m going to tell you the names of some colour and you will pick up the flag with this colour.) Each pupil can get one point for his team.
52533. THE MAGIC WALT DISNEY WORLD 2.04 MB
  It’s the Main Street. But we can’t go. We don’t know the names of cartoons in English. You can get 1 ball. Let’s underline the letter combinations and read them correctly. (дети подчеркивают и читают хором за учителем)
52534. W.Disney and His Amusement Park - Disneyland 61 KB
  The topic of our today’s lesson is “Walt Disney and His Amusement Park – Disneyland” and “The Past Indefinite Tense”. By the end of the lesson you should be able: 1. To talk about Walt Disney and his amusement park Disneyland, using active vocabulary.
52535. Складання розповіді за художньою картиною В. Хабарова „Портрет дівчинки” 529 KB
  Діти пропоную вам розглянути ось цу картину. Діти ви розглянули картину російського художника В. Де розмістив художник героїню Якою вона зображена Діти пригадайте свої відчуття коли ви захоплено читаєте або щось майструєте або малюєте. Діти у парах відновлюють розповідь за картиною.
52536. Проект «Я дитина всесвіту» 947.5 KB
  Вірно діти це вода. В казках мертва вода заживляла рани. Глибока вона там а вода знай в ній холодна джерельна студена. Журавель напоїв хлопчика джерельною водою а потім на своїх широких крилах відніс хлопчика додому і сказав: Запамятай вода жива її треба берегти Хлопчик подякував і повторив: вода жива.