3982

Аналитическая геометрия в пространстве

Лекция

Математика и математический анализ

Лекция Аналитическая геометрия в пространстве. Плоскость в пространстве Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору Пусть в пространстве OXYZ даны точка M0(x0, y0, z0) и ненулевой вектор n (A ...

Русский

2012-11-10

305.5 KB

39 чел.

Лекция 31

Глава 3. Аналитическая геометрия в пространстве

3.1. Плоскость в пространстве

Уравнение плоскости, проходящей через данную точку перпендикулярно

данному вектору

Пусть в пространстве OXYZ даны точка M0(x0, y0, z0) и ненулевой вектор

n ( A; B; C ) . Составим уравнение плоскости, проходящей через точку M0

перпендикулярно вектору.

Возьмем произвольную точку M ( x; y; z) на плоскости, тогда векторы n и M 0 M

взаимно перпендикулярны и их скалярное произведение равно нулю: (n, M o M ) 0 .

Отсюда получим уравнение

A( x

Вектор n

x0 ) B( y

y0 ) C ( z

z0 )

0.

( A; B; C ) называется нормальным вектором плоскости.

Общее уравнение плоскости

Общим уравнением плоскости называется уравнение первой степени относительно

переменных x, y и z :

Ax By Cz D 0 .

Уравнение плоскости, проходящей через три данные точки

Пусть в пространстве OXYZ даны

M 3 ( x3 ; y3 ; z3 )

три точки M1 ( x1; y1; z1 ) , M 2 ( x2 ; y2 ; z21) и

, не лежащие на одной прямой. Возьмем произвольную точку M ( x; y; z) на

плоскости, тогда векторы M 1M , M 1M 2 и M1M 3 расположены в одной плоскости, они

компланарны и их смешанное произведение равно нулю: M1M M1M 2 M1M 3

0 . Отсюда

получим уравнение плоскости

x x1

x2 x1

y y1

y2 y1

z z1

z2 z1

x3

y3

z3

x1

y1

0.

z1

Уравнение плоскости в отрезках

В пространстве OXYZ возьмем

M 3 (0;0; c)

три точки M1 (a;0;0) , M 2 (0; b;0) и

.

Подставим координаты этих точек в уравнение плоскости, проходящей через три данные

точки:

x a y z

a b 0

a

0 c

0.


Отсюда получим уравнение

bcx acy abz abc 0

или

x

a

y

b

z

c

1.

Нормальное уравнение плоскости

Уравнение

x cos

где

, ,

y cos

p 0,

z cos

- углы между нормальным вектором плоскости и координатными осями OX,

OY,OZ соответственно, p – длина перпендикуляра, опущенного из начала координат на

плоскость, называется нормальным уравнением плоскости.

Чтобы привести общее уравнение плоскости

Ax By Cz D 0

к нормальному необходимо умножить его на множитель

1

A

2

B2

C2

,

где знак выбирается противоположным знаку коэффициента D.

3.2. Основные задачи в пространстве

Угол между плоскостями

В пространстве OXYZ заданы две плоскости

и

:

A1 x B1 y C1 z D1

0,

A2 x B2 y C2 z

0.

Угол между этими плоскостями равен углу

n1

( A1; B1; C1 ) и n2

D2

между их нормальными векторами

( A2 ; B2 ; C2 ) . Следовательно,

cos

A1 A2

2

1

A

2

1

B

B1 B2 C1C2

C12

2

A2

2

2

B2 C2

.

Из этой формулы следуют условия перпендикулярности и параллельности

плоскостей.

Если плоскости

векторы n1

и

( A1; B1; C1 ) и n2

перпендикулярны, то перпендикулярны и их нормальные

( A2 ; B2 ; C2 ) . Значит, скалярное произведение n1 , n2

A1 A2 B1B2 C1C2 0 .

Это равенство есть необходимое и достаточное условие перпендикулярности двух

плоскостей.

0 или


Если плоскости

n1 ( A1; B1; C1 ) и n2

пропорциональны:

и

параллельны, то параллельны и их нормальные вектора

( A2 ; B2 ; C2 ) . Следовательно, координаты этих векторов должны быть

A1 B1 C1

.

A2 B2 C2

Это равенство есть необходимое и достаточное условие параллельности двух плоскостей.

Расстояние от точки до плоскости

Пусть в пространстве OXYZ заданы точка M 0( x0 , y0 , z0 ) и плоскость

Ax By Cz D 0 . Расстояние от точки до плоскости вычисляется по формуле

Ax0 By 0 Cz 0 D

.

d

A2 B 2 C 2

►Пример 1. Составить уравнение плоскости, которая проходит через точки

M 1 (1;1;1), M 2 (1;0;0) и M 3 (0;0;1) .

Пусть M ( x; y; z) - произвольная точка плоскости, тогда векторы M 1M ,

M 1M 2 и M1M 3 расположены в этой плоскости, они компланарны и их смешанное

произведение равно нулю: M1M M1M 2 M1M 3

0 . Отсюда получим уравнение плоскости

x 1 y 1 z 1

0

1

1

1

1

0

0

или

y z 1 0.

x

►Пример 2. Составить уравнение плоскости, проходящей через точки

M 1 (1;0; 1), M 2 (0;1;1) ) и параллельной вектору s

(1;1;0) .

Если M ( x; y; z) - произвольная точка плоскости, то векторы M 1M , M 1M 2 и

s компланарны. Следовательно,

x 1 y

1 2

1

0

z 1

2

0

0

или

x

y z

0.

►Пример 3. Составить уравнение плоскости, проходящей через точку M 1 (0; 1;1) и

линию пресечения плоскостей x 2 y 3z 4

0и x

y 6z 8 0 .

Линия пересечения двух плоскостей - прямая. На этой прямой найдем две точки.

Для этого решим систему из двух уравнений:


x 2 y 3 z 4 0,

x y 6 z 8 0.

Для еѐ решения применим метод Гаусса:

1

2 3 4

1 1

6

8

~

1

2 3 4

0 3

9 12

~

1

2 3 4

0 1

3 4

.

Система имеет бесконечно много решений, еѐ общее решение:

x

3 p 4, y

3 p 4, z

p, p

R.

Два частных решения, две точки M 2 ( 4; 4;0) и M 3 ( 1; 1;1) .

Теперь необходимо записать уравнение плоскости, проходящей через три точки

M 1 (0; 1;1) , M 2 ( 4; 4;0) и M 3 ( 1; 1;1) :

x

4

1

y 1 z 1

3

1

0

0

0

или

y 3z 4 0 .

3.3. Прямая в пространстве

Общее уравнение прямой

Прямую в пространстве можно определить как линию пересечения двух

непараллельных плоскостей. Пусть заданы две плоскости A1x B1 y C1z

A2 x B2 y C2 z

D2

D1

0 . Если нормальные векторы этих плоскостей не коллинеарные, то

система

A1 x B1 y C1 z D1 0,

A2 x B2 y C 2 z D2 0

определяет прямую.

Параметрическое уравнение прямой в пространстве

Зададим прямую l в пространстве при помощи точки M 0 ( x0 ; y0 ; z 0 ) этой прямой и

ненулевого вектора s (m; n; p ) параллельного прямой l. Эти условия однозначно

определяют прямую, так как через точку параллельно вектору можно провести только

одну прямую. Вектор s (m; n; p ) называется направляющим вектором прямой. Пусть

M ( x; y; z) - произвольная точка прямой l (см. рис. 1).


Z

M

l

M0

s

r

r0

O

Y

X

Рис. 1

Тогда вектор M 0M коллинеарен вектору s , следовательно,

M 0M

R.

t s, t

Три вектора r 0 , r и M 0M связаны соотношением

r

M 0M ,

r0

поэтому справедливо равенство

r r 0 t s, t R .

Полученное равенство называется векторным уравнение прямой. Здесь множитель t

может принимать любые числовые значения в зависимости от положения точки M на

прямой.

Если векторное равенство записать в координатной форме, то получим

параметрическое уравнение прямой:

x x0 mt ,

y y0 nt, t R,

z z0 pt,

где скалярный множитель t называется параметром.

Примеры

1. Написать уравнение прямой l, проходящей через точку M0(1,-1,2)

перпендикулярно плоскости 2x – 3y + z + 2 = 0.

Вектор n ( 2; 3;1) перпендикулярен данной плоскости и, значит, параллелен

прямой l. Теперь параметрическое уравнение прямой имеет вид

x

y

1 2t ,

1 3t ,

z

2 t.

2. Найти значения m, при которых прямая


x

1 mt ,

y

2 t,

z

t

лежит в плоскости 2x – y + z = 0.

Прямая лежит в плоскости, если координаты всех точек прямой удовлетворяют

уравнению плоскости. Отсюда следует, что после подстановки x, y и z из уравнения

прямой в уравнение данной плоскости, получим равенство

2 (1+mt)–(2–t)+t = 0,

которое должно выполняться при всех значениях t. Полученное равенство справедливо

при всех t только тогда, когда m =-1.

Коническое уравнение прямой

Пусть s

(m; n; p ) - направляющий вектор прямой и точка M 0 ( x0 ; y0 ; z 0 ) лежит на

этой прямой. Если M ( x; y; z) - произвольная точка прямой, то вектор MM 0 коллинеарен

вектору s и координаты этих векторов пропорциональны:

x x0

m

y

y0

z

n

z0

p

.

Полученное уравнение называется каноническим уравнением прямой.

Уравнение прямой проходящей через две точки

Пусть прямая проходит через две точки M1 ( x1 , y1 , z1 ) и M 2 ( x2 , y2 , z2 ) . Тогда вектор

M 1M 2

x2

x1; y2

y1; z2

z1

возьмем в качестве направляющего вектора прямой и из канонического уравнения прямой

получим

x x1

x2 x1

y y1

y2 y1

z z1

.

z 2 z1

Это уравнение называется уравнением прямой проходящей через две точки.

Угол между двумя прямыми, условие параллельности и перпендикулярности

прямых

Две прямые заданы уравнениями

x x1

l1

y

y1

n1

z z1

x x2

и

p1

l2

y

y2

n2

z z2

.

p2

Угол между прямыми равен углу между их направляющими векторами s1

s2

(m2 ; n2 ; p 2 ) :

(m1; n1; p1 ) и


cos

m1m2

2

1

n1n2

2

1

m

2

1

n

p1 p2

2

2

p

2

n2

m

2

p2

Условие параллельности и перпендикулярности прямых равносильно коллинеарности и

перпендикулярности направляющих векторов этих прямых.

Если прямые перпендикулярны, то перпендикулярны и их нормальные векторы

s1

(m1; n1; p1 ) и s 2

(m2 ; n2 ; p 2 ) . Значит, скалярное произведение

m1m2 n1n2 p1 p2 0 .

Если прямые параллельны, то параллельны и их нормальные вектора,

следовательно, координаты этих векторов должны быть пропорциональны:

m1 n1 p1

.

m2 n2 p2

3.4. Прямая и плоскость в пространстве

В пространстве заданы прямая и плоскость своими уравнениями

x x0

m

y

y0

z

z0

n

p

,

Ax By Cz D 0 .

Угол между прямой и плоскостью

Угол между прямой и плоскостью вычисляется по формуле

sin

Am Bn Cp

A2

B2

C2

m2

n2

p2

Прямая и плоскость перпендикулярны тогда и только тогда, когда направляющий вектор

прямой s

(m; n; p ) и нормальный вектор плоскости n

A

B

m

n

( A; B; C ) коллинеарны, т.е.

C

p .

Прямая и плоскость параллельны, когда эти векторы перпендикулярны, т.е.

Am Bn Cp

0.

Точка пересечения прямой с плоскостью

Для того, чтобы найти точку пересечения прямой и плоскости необходимо решить

систему двух уравнений

x x0

m

y

y0

n

z

z0

p

Ax By Cz D 0 .

,


Уравнение прямой запишем в параметрическом виде:

x

x0

mt ,

y

y0

nt,

z

z0

pt.

После подстановки получим

A( x0

mt ) B( y0

nt) C ( z0

pt) D

0.

Отсюда

Ax0 By0 Cz0 D

.

Am Bn Cp

t

Далее необходимо вычислить координаты точки.

3.5. Поверхности второго порядка

Сфера

( x x1 ) 2

y1 ) 2

(y

( z z1 ) 2

R2 .

Цилиндрические поверхности

Поверхности, составленные из всех прямых, пересекающих данную

линию l и параллельных данной

прямой, называются цилиндрическими

поверхностями.

x2

a2

y2

b2

1

x2

a2

y2

b2

1 - гиперболический цилиндр

y2

2 px - параболический цилиндр

- эллиптический цилиндр

Конические поверхности

Поверхность составленная из всех прямых пересекающих данную

линию l , и проходящих через данную точку p , называются конической

поверхностью.

x2

Уравнение конической поверхности: 2

a

y2

b2

z2

c2

Эллипсоид

x2

a2

Гиперболоид

y2

b2

z2

c2

1 - эллипсоид

0.


x2

a2

y2

b2

z2

c2

1 - однополостный гиперболоид

x2

a2

y2

b2

z2

c2

1 - двуполостный гиперболоид

Параболоид

2z

2z

x2

p

x2

p

y2

- эллиптический параболоид

q

y2

- гиперболический параболоид.

q



 

А также другие работы, которые могут Вас заинтересовать

22625. ГІРОСКОП 112.5 KB
  Вимірювання швидкості прецесії гіроскопа. Визначення моменту імпульсу та моменту інерції гіроскопа. Макетна установка для спостереження явища регулярної прецесії гіроскопа та виконання необхідних вимірювань. Головне припущення елементарної теорії гіроскопа полягає у тому що і при повільному русі осі обертання у будьякий момент часу момент імпульсу гіроскопа відносно його нерухомої точки вектор вважається направленим по осі гіроскопа у той же бік що й вектор кутової швидкості .
22626. Принципова схема лазера. Властивості лазерного випромінювання. Основні типи лазерів 47.5 KB
  Властивості лазерного випромінювання.Такий процес називається вимушеним індукованим випромінюванням. Для виходу випромінювання одне з дзеркал резонатора роблять напівпрозорим. Окрім підсилення хвилі активним середовищем є фактори що зменшують амплітуду хвилі фактори: коефіцієнт відбивання дзеркал r 1 виводимо частину випромінювання з системи дифракція розсіяння світла середовищем резонатора.
22627. Основні принципи голографії 47 KB
  Метод реєстрації фази хвилі та її відновлення називається голографією. Голограма система перепонок розташованих на шляху світлової хвилі що несе в собі зашифровану фазову та амплітудну інформацію про предмет. Інтенсивність на фотопластинці : де амплітуда опорної хвилі амплітуда відбитої від предмета хвилі. Відтворення за допомогою голограми хвилі яка була розсіяна предметом і несла з собою інформацію про нього ґрунтується на фотометричних властивостях фотографічних матеріалів.
22628. Явище Доплера в оптиці і в акустиці 50.5 KB
  Акустичні хвилі розповсюджуються в середовищі газі всередині якого можуть рухатись джерело і приймаючий пристрійтак що потрібно розглядати не тільки їх рух відносно одинодного а й по відношенню до середовища. Швидкість хвилі в середовищі С=const не залежить від руху джерела. Отже хвилі що вийшли за час τ=t2t1 дійдуть до пристрію протягом часу Θ=Θ2Θ1=τ1V с. Вона рівна: у випадку віддалення від джерела у випадку наближення до джерела Так як швидкість хвилі в середовищі визначається властивостями хвилі тобто не залежить від руху...
22629. Закони збереження та фундаментальні властивості простору і часу 62.5 KB
  Однорідний простір всі точки еквівалентні: L не змінюється при перенесені на нескінченно малий 1 довільне → Рівняння Лагранжа просумуємо по і тоді тобто оскільки закон збереження імпульсу є наслідком варіаційного принципу і однорідності простору. Однорідність часу = закон збереження енергії для ізольованих систем а також для незамкнених систем якщо зовнішні умови не змінюються з часом. Ізотропність простору еквівалентність всіх напрямків: L не зміниться якщо систему повернути на нескінченно малий кут навколо довільної...
22630. Рух тіл в інерціальних та неінерціальних системах відліку. Сили інерції. Коріолісове прискорення 75.5 KB
  Система відліку в якій прискорення матеріальної точки цілком обумовлено лише взаємодією її з іншими тілами а вільна матеріальна точка яка не підлягає дії ніяких інших тіл рухається відносно такої системи прямолінійно і рівномірно називається інерціальною системою відліку ІСВ. Твердження про те що такі системи відліку існують складає зміст 1ого закону Ньютона. Принцип відносності Галілея говорить про те що закони механіки не змінюють свого вигляду при переході від однієї системи відліку до іншої яка рухається рівномірно і прямолінійно....
22631. Закон руху матеріальних точок та твердого тіла 74 KB
  Запишемо другий закон Ньютона для матеріальної точки з даної системи: 1 де зовнішня сила що діє на іту м. Записавши 1 для кожної точки системи та просумувавши всі отриманні рівняння по і маємо: 2. Уведемо задає точкуцентр мас системи Центр мас рухається так ніби в ньому зосереджена вся маса системи. Повна кількість руху системи: = це математичне формулювання закону збереження імпульсу.
22632. Хвилі у пружному середовищі. Хвильове рівняння. Звукові хвилі 66 KB
  Хвилі у пружному середовищі. Звукові хвилі. Хвильовий процес характеризується фазовою швидкістю або швидкістю розповсюдження хвилі с груповою швидкістю або швидкістю розповсюдження хвильового пакету довжиною хвилі частотою або періодом коливань; між цими величинами існує простий звязок: . Довжина хвилі це відстань між частинками які коливаються з однаковою фазою.
22633. Рух ідеальної рідини. Рівняння Бернуллі 75 KB
  Рух ідеальної рідини. Ідеальна рідина внутрішнє тертя відсутнє сила тертя між окремими шарами рідини що тече рідина нестислива. Рівняння 1 для такої рідини має вигляд: Лінії потоку це лінії дотичні до яких в кожній точці співпадають за напрямом з вектором . При стаціонарному русі рідини її частинки при своєму русі не перетинають трубку потоку.