39832

Знакомство с операциями твердотельного моделирования: кинематическая операция

Лекция

Архитектура, проектирование и строительство

Введение В работах № 2 и № 3 вы фактически уже познакомились с перемещением эскизасечения по заданным траекториям хотя слово траектория и не применялось. При применении операции Выдавливание перемещение эскиза производится вдоль отрезка прямой перпендикулярной плоскости построения эскиза. Результатом этой операции были модели таких твердых тел как тонкая пластина эскиз Отрезок цилиндр или труба эскиз Окружность гнутые тонкие пластины эскиз Ломаная линия или Кривая Безье. При применении операции Вращение перемещение...

Русский

2013-10-08

1.38 MB

17 чел.

9 Знакомство с операциями твердотельного моделирования:


Кинематическая операция

накомство с операциями твердотельного моделирования: 9

Кинематическая операция

Работа № 4

Знакомство с операциями твердотельного моделирования:
кинематическая операция

Цель работы: Изучение Кинематической операции. Особенности Кинематической операции твердотельного моделирования.

Введение

В работах № 2 и № 3 вы фактически уже познакомились с перемещением эскиза-сечения по заданным траекториям, хотя слово траектория и не применялось.

1. При применении операции Выдавливание перемещение эскиза производится вдоль отрезка прямой, перпендикулярной плоскости построения эскиза.

Результатом этой операции были модели таких твердых тел, как тонкая пластина (эскиз  Отрезок), цилиндр или труба (эскиз  Окружность), гнутые   тонкие пластины (эскиз  Ломаная линия или Кривая Безье).

2. При применении операции Вращение перемещение исходного эскиза производится только по круговой траектории относительно заданной оси вращения.

Результатом этой операции были твердые тела представляющие собой тела вращения: труба (эскиз  Отрезок), тор (эскиз – Окружность), заготовка вазы и т.п.

Таким образом, для получения одинаковых моделей твердых тел можно использовать разные модели твердотельного моделирования. Например, трубу можно получить как с помощью операции Выдавливание, так и с помощью операции Вращение.

Обратите внимание! В обоих случаях траектории перемещения эскиза находились в других плоскостях по отношению к плоскости построения исходного эскиза. Таким образом, эскиз находился в одной плоскости, а при выполнении твердотельной операции происходило его перемещение по строго определенной траектории, которая, в свою очередь, принадлежала другой плоскости.

В этой работе мы познакомимся с Кинематической операцией твердотельного моделирования в системе КОМПАС-3D LT.

Кинематическая операция сочетает в себе свойства операций Выдавливание и Вращение и позволяет создать модель твердого тела, полученную перемещением плоскости эскиза по произвольной траектории.

Кинематическая операция позволяет создать деталь, являющуюся результатом перемещения эскиза-сечения вдоль эскиза-траектории. При этом плоскость, в которой находится  эскиз-траектория не совпадает с плоскостью эскиза-сечения.

Часть 1. Применение команды Кинематическая операция к эскизу Окружность

Простым примером применения Кинематической операции является создание модели водопроводной трубы. Действительно эскиз Окружность перемещается по замысловатой траектории, которая сама является эскизом кривой и лежит в перпендикулярной плоскости к первоначальному эскизу.

Эскиз-сечение состоит из окружности, расположение окружности на плоскости и ее радиус пока не важны. Эскиз-траектория представляет произвольную кривую с двумя точками перегиба.

Задание 1. Создание модели изогнутой трубы

1.1. Запустите систему КОМПАС-3D LT.

1.2. Закройте окно справки.

1.3. Выполните команду ФайлСоздать…Деталь.

1.4. Установите ориентацию Изометрия XYZ.

1.5. Выберите в окне Дерево модели плоскость XY (Фронтальная плоскость).

1.6. Выполните команду Эскиз через контекстное меню выбранной плоскости построения  или нажмите кнопку  – Эскиз на панели Текущее состояние.

Окно программы подготовлено для создания эскиза во Фронтальной плоскости.

1.7. Выберите команду  – Окружность на панели Геометрия, тип линии Основная.

1.8. Щелкните левой кнопкой мыши в рабочем поле – это центр окружности, затем переместите курсор в сторону и щелкните еще раз – это точка, через которую должна проходить окружность (рис. 4.1).

Рис. 4.1. Эскиз-сечение Окружность во Фронтальной плоскости.

1.9. Завершите создание эскиза-сечения Окружность.

Теперь необходимо создать второй эскиз – Траектория, который представляет собой кривую с двумя точками перегиба.

Так как эскиз Окружность находится во фронтальной плоскости, то его перемещение будем производить по траектории в горизонтальной плоскости.

1.10. Выберите в окне Дерева модели плоскость ZX (Горизонтальная плоскость).

1.11. Нажмите на панели управления кнопку Эскиз – .

1.12. Выберите на панели Геометрия команду Кривая Безье , стиль линии Основная.

Примечание.

Если траектория разомкнута, один из ее концов обязательно должен совпадать с плоскостью эскиза-сечения. В нашем случае траектория разомкнута, поэтому первую точку кривой удобнее поставить в точке пересечения осей X и Y, т.е. в начале системы координат эскиза, которое совпадает с началом системы координат в пространстве.

1.13. Постройте кривую с двумя точками перегиба, один из концов которой совпадает с началом координат, примерно так, как показано на рис. 4.2.

Рис. 4.2. Эскиз-траектория Кривая Безье в горизонтальной плоскости.

Внимание.

Так как построение ведется в Горизонтальной плоскости, то Фронтальную плоскость мы видим как бы с "торца", поэтому окружность (справа от траектории) кажется отрезком.

1.14. Завершите работу с эскизом.

1.15. На панели управления нажмите кнопку Показать все .

Таким образом, вы создали два эскиза во взаимно перпендикулярных плоскостях, которые отражены в Дереве модели (рис. 4.3):

Рис. 4.3. Эскиз – сечение (Окружность) и эскиз – траектория (Кривая Безье).

  •  Эскиз: 1 – эскиз-сечение Окружность во фронтальной плоскости.
  •  Эскиз: 2 – эскиз-траектория Кривая Безье в горизонтальной плоскости.

Теперь эскиз-сечение Окружность надо переместить по эскизу-траектории Кривая Безье.

1.16. На панели построения детали выберите операцию твердотельного моделирования Кинематическая операция . Панель свойств операции показана на рис. 4.4.

Рис. 4.4. Панель свойств кинематической операции.

1.17. На закладке Тонкая стенка (она ничем не отличается от аналогичной закладки других операций твердотельного моделирования) выберите Тип построения тонкой стенки − Наружу, толщину стенки пока менять не нужно (оставляем "по умолчанию").

На закладке Параметры панели свойств кинематической операции (рис. 4.4) требуется установить параметры выбранной операции и выбрать объекты, участвующие в формировании твердотельной модели.

Объектами кинематической операции являются эскиз-сечение и эскиз-траектория, которые выбираются щелчком мыши на соответствующих узлах Дерева модели либо непосредственно на самом объекте в рабочем поле программы.

Тип перемещения сечения вдоль траектории устанавливается с помощью команды Движение сечения. Существует три возможных варианта перемещения: ортогонально траектории, параллельно самому себе и с сохранением угла наклона.

  •  Ортогонально траектории: сечение перемещается так, чтобы в любой точке элемента плоскость сечения была перпендикулярна траектории.
  •  Параллельно самому себе: сечение перемещается так, что в любой точке элемента его плоскость параллельна плоскости эскиза, содержащего сечение.
  •  С сохранением угла наклона: сечение перемещается так, чтобы в любой точке элемента угол между плоскостью сечения и траекторией был постоянным и равным углу между плоскостью эскиза-сечения и траекторией в начальной точке траектории.

1.18. Активизируйте опцию Сечение и в Дереве модели щелкните на узле Эскиз: 1 (или на окружности в поле построения).

1.19. Аналогичным образом определите траекторию перемещения эскиза-сечения: это должен быть Эскиз: 2 (Кривая Безье).

1.20. Выберите вариант перемещения – Ортогонально траектории.

1.21. Создайте объект.

Результат применения кинематической операции к сечению Окружность по траектории Кривая Безье показан на рис. 4.5.

Рис. 4.5. Результат применения кинематической операции
к эскизу Окружность.

1.22. Сохраните полученную деталь в файл Труба_кинематика.

Таким образом, вы познакомились еще с одной операцией твердотельного моделирования − Кинематическая операция, в которой эскиз-сечение перемещается вдоль эскиза-траектории.

Часть 2. Применение команды Кинематическая операция к эскизу Отрезок

Задание 2. Создание модели ломаной пластины по эскизу Отрезок

Постройте модель твердого тела по эскизу Отрезок, используя Кинематическую операцию. Длину и расположение отрезка во фронтальной плоскости выберите по своему усмотрению. Траектория движения лежит в горизонтальной плоскости и представляет собой ломаную линию с одной точкой изгиба.

Примерный вариант выполнения этого задания будет показан на рисунках, но он может и не совпадать с вашим.

2.1. Подготовьте окно документа для создания эскиза новой детали во Фронтальной плоскости (см. п.п. 1.3-1.6 или 1.1.-1.6 при первоначальном запуске системы твердотельного моделирования).

2.2. На инструментальной панели Геометрия выберите команду Отрезок, на Панели свойств команды проверьте стиль линии: это должен быть тип Основная.

2.3. В рабочем поле постройте отрезок, задав его начальную и конечную точки.

2.4. Завершите создание первого эскиза Отрезок.

2.5. Выберите в окне Дерево модели плоскость ZX (Горизонтальная плоскость) для построения эскиза-траектории.

Вы, конечно, теперь хорошо знаете, что из эскиза Отрезок можно получить только тонкую пластину, правда, любой изогнутости. По условию задания траектория представляет ломаную линию с одним перегибом.

2.6. На панели Геометрия воспользуйтесь командой Непрерывный ввод объектов (в данном случае – отрезков) для построения ломаной линии с одним перегибом, стиль линии Основная.

Внимание.

Поскольку наша траектория разомкнута, один из ее концов обязательно должен совпадать с плоскостью эскиза-сечения, поэтому первую точку ломаной удобнее поставить в точке пересечения осей X и Y.

2.7. Постройте в рабочем поле эскиз-траекторию Ломаная с одной точной изгиба.

2.8. Завершите работу с эскизом-траекторией. Сравните свой результат с рис. 4.6.

Рис. 4.6. Примерный вид эскиза Отрезок
и эскиза-траектории Ломаная линия с одной точкой изгиба.

Теперь можно применить Кинематическую операцию твердотельного моделирования.

2.9. Выберите на инструментальной панели Редактирование детали кнопку команды  Кинематическая операция.

2.10. На закладке Тонкая стенка панели свойств кинематической операции задайте:

  •  Тип построения тонкой стенки − Средняя плоскость,
  •  толщину стенки: 2 мм.

2.11. На закладке Параметры определите:

  •  объекты кинематической операции: сечение (узел Эскиз: 1 в Дереве модели) и траекторию (Эскиз: 2);
  •  Движение эскиза – Ортогонально траектории.

2.12. Нажмите кнопку Создать объект на Панели специального управления, завершив тем самым работу с операцией. Деталь Ломаная пластина построена!

2.13. Сохраните деталь в файл под именем Пластина_кинематика.

В данном задании к объекту Отрезок была применена Кинематическая операция, которая произвела перемещение отрезка вдоль траектории состоящей из двух отрезков расположенных под углом друг к другу.

Часть 3. Применение команды Кинематическая операция по
замкнутой траектории

Задание 3. Создание модели рамки для фотографии

Создайте модель рамки для фотографий. Прямоугольная рамка представляет собой замкнутую траекторию. Образец сечения (профиль) рамки показан на рис. 4.7 (конечно, он может быть любым).

Рис. 4.7. Эскиз сечения рамки (образец).

Выполним построение твердого тела по эскизу сечения и переместим его по прямоугольной траектории.

3.1. Подготовьте окно документа для создания эскиза-сечения во Фронтальной плоскости.

3.2. На инструментальной панели Геометрия выберите команду Непрерывный ввод объектов, на Панели свойств команды проверьте тип линии: это должен быть стиль Основная.

3.3. Создайте эскиз сечения по образцу на рис. 4.7.

3.4. Завершите работу с эскизом.

Теперь надо создать эскиз-траекторию. Как уже говорилось, траектория замкнутая и имеет форму прямоугольника.

3.5. Выберите в окне Дерево модели плоскость ZX (Горизонтальная плоскость) для создания эскиза-траектории и нажмите кнопку Эскиз.

3.6. Проведите построение замкнутой траектории с помощью команды Прямоугольник по диагональным вершинам  на панели Геометрия (возможно, эту команду придется выбрать на расширенной панели). Построение прямоугольника осуществляется двумя нажатиями левой кнопкой мыши на рабочем поле:

  •  первый щелчок – ввод одной вершины прямоугольника;
  •  второй щелчок – ввод второй вершины прямоугольника.

Внимание.

Первую точку траектории движения эскиза-сечения нужно поставить в точке пересечения осей X и Y.

3.7. Установите масштаб отображения 0,5. Постройте траекторию Прямоугольник, как показано на рис. 4.8.

3.8. Завершите редактирование эскиза-траектории.

После создания эскиза-сечения и эскиза-траектории можно использовать Кинематическую операцию твердотельного моделирования.

3.9. Выберите кнопку команды Кинематическая операция.

3.10. На Панели свойств команды Кинематическая операция задайте следующие параметры:

  •  Тип построения тонкой стенки – Нет.
  •  объект СечениеЭскиз: 1.
  •  объект ТраекторияЭскиз: 2.
  •  Движение сечения – Ортогонально траектории.

Рис. 4.8. Замкнутая траектория Прямоугольник, Горизонтальная плоскость,
вид
Сверху. Масштаб отображения 0,5.

3.11. Нажмите кнопку Создать объект. Деталь Рамка построена  рис. 4.9. Чтобы увидеть деталь целиком, нажмите на панели управления кнопку  Показать все.

Рис. 4.9. Деталь Рамка для фотографии.

3.12. Сохраните деталь в файл под именем Рамка_фото.

3.13. Закройте окно документа.



 

А также другие работы, которые могут Вас заинтересовать

21232. Социальная психология личности 18.89 KB
  Понимание личности в соц. существенно отличается от понимания личности в смежных науках: социология и общая психология. детерминации личности.
21233. Конфликт: функции и структура, динамика и топология. Способы психологической работы с конфликтами 20.22 KB
  Способы психологической работы с конфликтами Конфликт это трудно разрешимая ситуация которая может возникнуть в силу сложившейся дисгармонии межличностных отношений между людьми в обществе или группе а так же в результате нарушения равновесия между существующими в них структурами. Функции конфликта конструктивная он выступает источником развития и противоречия она призвана разрешать противоречия и как правило конфликт исчерпывается и как правило влечет к положительному завершения конфликта деструктивная в конфликте люди испытывают...
21234. ПРОДОЛЬНАЯ ДИФФЕРЕНЦИАЛЬНАЯ ЗАЩИТА 591.5 KB
  Поэтому релейная защита в указанных сетях должна быть в первую очередь быстродействующей то есть работать без выдержки времени. Продольная дифференциальная защита является защитой с абсолютной селективностью не реагирует на внешние КЗ токи нагрузки качания и за счёт этого она может действовать без выдержки времени и иметь высокую чувствительность. Поскольку защита должна работать без выдержки времени то необходимо принять в расчёт и переходные токи.
21235. ДИСТАНЦИОННАЯ ЗАЩИТА 87 KB
  Необходимо применение быстродействующей селективной защиты обладающей высокой чувствительностью в сетях любой конфигурации. Выдержка времени дистанционной защиты зависит от удалённости места КЗ.1 Основным органом дистанционной защиты является измерительный дистанционный орган определяющий удалённость КЗ.2 Трёхступенчатая дистанционная защита Для обеспечения селективности дистанционные защиты в сетях сложной конфигурации выполняются направленными и действуют только при направлении мощности КЗ в линию.
21236. ЗАЩИТА ГЕНЕРАТОРОВ 139 KB
  Защита должна действовать на отключение. Ток до 5 А считается безопасным и защита должна действовать на сигнал при токах более 5 А на отключение. Защита должна действовать на отключение.
21237. ЗАЩИТА ТРАНСФОРМАТОРОВ И АВТОТРАНСФОРМАТОРОВ 451.5 KB
  2 Межвитковые замыкания в одной фазе защита должна действовать на отключение. 3 Замыкания на землю защита действует на отключение или на сигнал. Ненормальные режимы: 1 Протекания сверхтоков при внешнем КЗ защита должна действовать на селективное отключение.
21238. ЗАЩИТА ВЫСОКОВОЛЬТНЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ 155 KB
  Междуфазные КЗ сопровождаются сверхтоками поэтому защита должна действовать на отключение. Используется токовая защита до 5 МВт свыше 5 МВТ продольная дифференциальная защита. 2 Замыкания на землю сопровождаются малым током однако во избежание разрушения стали двигателя устанавливается защита на отключение. 3 Витковые замыкания сопровождаются сверхтоками однако особая защита не устанавливается вследствие дороговизны так как если витковые замыкания развиваются то переходят в междуфазные КЗ или КЗ на землю и отключаются...
21239. УСТРОЙСТВА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ 344 KB
  АВТОМАТИЧЕСКОЕ ПОВТОРНОЕ ВКЛЮЧЕНИЕ АПВ. называется устройством автоматического повторного включения или сокращённо АПВ. Далее АПВ рассматривается для линии электропередачи. Если после повторного включения линия остается в работе то говорят что цикл АПВ был успешным если отключается вновь то цикл АПВ был неуспешным.
21240. АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА 170 KB
  Чтобы повысить надёжность электроснабжения нагрузок питающихся по разомкнутым схемам применяют нормально отключенные резервные источники питания которые включаются вручную или устройствами АВР в случае потери рабочего источника. Успешность АВР составляет 90  95 . Поэтому устройства АВР служат мощным средством повышения надёжности электроснабжения. Выбор параметра пуска схемы АВР Схема автоматического включения резерва должна производить включение резервного элемента при вполне определенных условиях.