40132

Матрицы

Доклад

Менеджмент, консалтинг и предпринимательство

Матрицы. Определение умножение матриц на число и сложение их умножение матриц ранг матрицы и его нахождение путем элементарных преобразований вычисление обратной матрицы по формулам и методом исключения. Матрицы это прямоугольные таблицы элементов из m строк и n строк. m n порядки матрицы они определяют размерность матрицы Обозначение: Если m = n то матрица называется квадратной.

Русский

2013-10-15

93 KB

1 чел.

1. Матрицы. Определение, умножение матриц на число и сложение их, умножение матриц, ранг матрицы и его нахождение путем элементарных преобразований, вычисление обратной матрицы по формулам и методом исключения.

Матрицы – это прямоугольные таблицы элементов из m строк и n строк.

m, n – порядки матрицы, они определяют размерность матрицы

Обозначение:

Если m = n, то матрица называется квадратной. В случае квадратной матрицы вводятся понятия главной и побочной диагонали матрицы (главная: i = j; побочная: i = n - j + 1).

[Равенство двух матриц] A = B, если

1) dim A = dim B

2)  

Основные операции над матрицами:

  1.  Пусть dim A = dim B (необходимое условие), тогда суммой матриц А и В называется новая матрица Сmn: сij=aij+bij . (1)

Обозначение:

Операция получения суммы называется сложением.

Свойства операции сложения:

1 А+В=В+А (коммутативность)  

2 (А+В)+С = А+(В+С)  (ассоциативность)

Док-во очевидным образом из определения.

  1.  Произведение матрицы А на число R называется матрица С: cij = aij   (2)

Обозначение:  (по определению, доказывать не надо)

Свойства:

1 ()А = (А)  (ассоциативность)

2 (А+В) = А+В (дистрибутивность относительно сложения матриц)  

3 (+)А = А+А (дистрибутивность относительно сложения чисел)

Док-во из определения, расписываются левые и правые части и сравниваются.

ЗАМ: Разностью матриц А и В называется матрица С:  С + В = А. Обозначение . Имеет место:

  1.  Умножение матрицы на матрицу (перемножение матриц)

Произведением матрицы Аmn на матрицу Вnp называется матрица Сmp:  (3)

Обозначение:

(Строка i матрицы А умножается на столбец j матрицы В в смысле скалярного произведения)

Свойства:

1 (АВ)С=А(ВС)   (ассоциативность)

2 А(В+С) = АВ+АС

   (А+В)С = АС+ВС   (дистрибутивность)

Док-во через сравнение размерностей прав и лев частей. Докажем 2:

ЗАМ: Произведения АВ и ВА определены и имеют одну и туже размерность лишь тогда, когда, А и В – квадратные матрицы одного и того же порядка. Для таких матриц можно исследовать коммутативность.  Вообще говоря, коммутативность не выполняется АВВА. Можно показать на простых примерах. Имеются некоторые частные случаи, когда коммутативность выполняется:

Если D = Dn – диагональная матрица, то

В частности если D = E  и  D = 0.

Ранг матрицыmax порядок отличных от 0 миноров r(A)=rang(A).

Из Т. о базисном миноре следует, что ранг матрицы есть max число линейно независимых строк или столбцов. Находят ранг несколькими способами:

1. методом элементарных преобразований. Используют тот факт, что элементарные преобразования матрицы не меняют ее ранг. Элементарные преобразования:

  •  перестановка любых двух строк (столбцов)
  •  умножение любой строки (столбца) на любое число, не равного 0
  •  умножение любой строки (столбца) на любое число и прибавление полученного результата к любой строке (столбцу)

Используя элементарные преобразования, приводят матрицу к треугольному виду, более того можно привести к диагональному виду.

2. метод окаймляющих миноров. Пусть в матрице найден , тогда рассматривают лишь те миноры (k + 1) порядка, которые содержат в себе .

Если все такие миноры = 0, то r(A) = k.  Если же среди них , то процесс повторяется.

Обратная матрица.

A = (Аnn)

Матрица В называется правой обратной к А, если АВ = Е

Матрица C называется  левой обратной к А, если СА = Е.

Если В и С существует, то В = С.

Если А – невырожденная (), то вместо «левой» и «правой» говорят просто об обратной матрице к А. Таким образом, обратная матрица В определяется отношением:

АВ = ВА = Е.

Из этого равенства видно, что А и В взаимообратные, А = В-1 и В = А-1

Нахождение обратной матрицы

1. По формулам:

Вычисляется det A,

Если det A0, то вычисляется P=PAij – алгебраическое дополнение), 

В=РТ,

.

2. Метод исключения (на основе метода Гаусса)

Образуем систему линейных уравнений , (1)

АХ=У.  (2)

X – неизвестные

Y – условно считаются известными.

По теореме Крамера система имеет единственное решение (так как )

Для построения обратной матрицы систему (2) решаем методом Гаусса, т.е. методом последовательного исключения:

,

Х=ВУ,

С другой стороны, с учетом (2) Х= А-1У. Так как решение единственно, то В= А-1.


 

А также другие работы, которые могут Вас заинтересовать

49181. Принципиальная схема управляемого блока питания для двигателя в механизме подъёма хирургического стола 633.32 KB
  Механический стол показанный на рисунок 1 уже устаревший но до сих пор успешно применяется в области медицинского приборостроения. Рисунок 1. Механический стол Гидроприводные столы рисунок 2 являются следующим этапом развития конструкции операционного стола. Рисунок 2.
49182. Разработка игры «Морской бой» с ИИ 4.29 MB
  Разработанный программный продукт реализует классическую версию игры «морской бой» с возможностью выбора уровня сложностей и визуализацией. Кроме того, в проекте реализована система ведения статистики игры. Среди рассмотренных аналогов ни один не обладал всеми этими возможностями сразу.
49183. Жизнедеятельность М. Вебера. Теория познания и методология 246.2 KB
  Вебере и его трудах несмотря на то что современная социология уже ушла далеко вперед актуальность этой теме не вызывает сомнений. Вопервых потому что как и всякий крупный ученый М. Вебера не только классическую социологическую теорию но и чтото новое современное и апеллирующее к непреложным и неизменным законам по которым живет социум.: Аграрная история древнего мира 1923 сразу поставившие его в ряд наиболее крупных ученых свидетельствуют о том что он усвоил требования исторической школы и умело пользовался...
49184. Понятие марксистской социологии. Диалектический материализм и социология 161.07 KB
  Устами своих основоположников Карла Маркса и Фридриха Энгельса она заявила о себе как о научном истолковании исторического процесса базирующемся на объективных данных исторической экономической социологической и других науках. Марксом и Ф.
49185. Расчет системы автоматического регулирования ГТД для поддержания частоты вращения ГТД 592.8 KB
  Расчет клапана для регулирования подачи топлива. Расчет расходов топлива. Расчет расхода топлива на номинальном режиме работы ГТД. Расчет расхода топлива на максимальном режиме работы ГТД.