40136

Пределы и непрерывность. Числовая последовательность и ее предел. Определение функции, ее непрерывность на языке эпсилон-дельта и языке пределов, равномерная непрерывность

Доклад

Менеджмент, консалтинг и предпринимательство

Обратное не верно: xn=nsin n неограниченная не бесконечно большая Функция Функцией y = fx называется закон по которому каждому значению xDfR ставится в соответствие единственное действительное число yR. Функция может быть задана аналитически то есть формулой таблично или графически. y=x2 Если функция задана таблично то чтобы найти значение функции для промежуточных значений аргумента применяют интерполяцию заменяя функцию линейной квадратичной на участке между двумя значениями аргумента. Например fx0=0 = 3  O1...

Русский

2013-10-15

165 KB

20 чел.

5. Пределы и непрерывность. Числовая последовательность и ее предел. Определение функции, ее непрерывность на языке "эпсилон-дельта" и языке пределов, равномерная непрерывность.

Если каждому значению n = 1,2,… ставится в соответствие  по некоторому закону вещественное число xn, то множество занумерованных вещественных чисел x1, x2,…, xn,.. = {xn} называется числовой последовательностью. Это частный случай функции, аргумент которой принимает дискретные значеня.

Если даны 2 последовательности {xn} и {yn}, то последовательность {xn + yn} называется их суммой, {xn * yn}  – произведением, {xn / yn} для  yn  0 – частным.

Предел

Число A называется пределом последовательности при

 если  >0 такой номер N0>0:    n > N0:   

В любой окрестности точки A находятся все члены последовательности, начиная с некоторого номера.

Если существует конечный , то последовательность называется сходящейся. В противном случае (если A =  или lim не ) последовательность называется расходящейся.

Точка x0 называется предельной точкой множества M, если в окрестности x0 содержится бесконечное множество точек множества M.

Если последовательность имеет несколько предельных точек, то значение самой большой предельной точки называется верхним пределом последовательности , а значение самой меньшей предельной точки называется нижним пределом последовательности .

Пример.

1,  1-1/2,  -1,     2,  1,  1-1/4,  -2,      3,  1-1/8,  -3, …     n,  1-1/2n,  -n, …

Последовательность имеет 3 предельные точки +; 1; -

– неконечный,     – неконечный.

Последовательность расходящаяся.

Последовательность может быть сходящейся, только если она имеет единственную точку (число).

Последовательность называется ограниченной, если  M>0, что для

Т: Из всякой ограниченной последовательности можно выбрать сходящуюся подпоследовательность.

Т: Если последовательность сходится, то она является ограниченной. Обратное неверно.

Пример.

-1, 1, -1, 1, …, (-1)n – ограничена, т.к.

Но не сходится, так как 2 предельные точки

Если , то последовательность {xn} называется бесконечно малой.

Если  – бесконечно большой.

Связь неограниченная бесконечно большая:  бесконечно большая неограниченная

Неограниченный: для M > 0    n0N:  |xn|  M 

Бесконечно большая: для >0  N0: для всех n>N0:  |xn| >

n = N0+1  |xn| >   M  n

бесконечно большая неограниченная. Обратное не верно:

xn=n*sin n

неограниченная

не бесконечно большая

Функция

Функцией y = f(x) называется закон, по которому каждому значению xD(f)R ставится в соответствие единственное действительное число yR.

При этом множество значений аргумента D(f) называется областью определения функции, а множество значений {y | y = f(x),  xD(f)} называется  множеством значений функции.

Функция может быть задана аналитически (то есть формулой), таблично или графически.

y=x2

Если функция задана таблично, то чтобы найти значение функции для промежуточных значений аргумента применяют интерполяцию, заменяя функцию линейной, квадратичной на участке между двумя значениями аргумента.

Пусть точка x0 является предельной точкой области определения функции, тогда

  для  > 0   > 0:   xD(f) O(x0) \ {x0}:  f(x) O(A)

(O  -окрестность).

Зачем \ {xn}.  Например

f(x0=0) = 3  O(1)

Левосторонний предел

  для  > 0   > 0:   x:     

Правосторонний предел

  для  > 0   > 0:   x:     

Двусторонний предел

  

Непрерывность

Функция f(x) называется непрерывной в точке x0, если:

  1.  
  2.  .

На языке пределов:  функция f(x) называется непрерывной в точке x0, если она:

1) определена в этой точке;

2)  

На языке ε и δ: функция f(x) называется непрерывной в точке x0, если:

1)

2) для  > 0   > 0:  x: | xx0| < δ: | f(x) – f(x0)|  < ε.

1. Если x0 является предельной точкой D(f)

f(x0+) = A  < 

f(x0–) = B  <

x0разрыв I рода, скачок

2. Если хотя бы один из односторонних

пределов = или не , то x0 – точка разрыва II рода

Разрыв называется устранимым, если существуют  и конечны. (Пример: y = x2 / |x|)

Если функция непрерывна в каждой точке множества X, то она непрерывна на множестве X.

Сумма , произведение , частное, суперпозиция  есть функция непрерывная.

Все элементарные функции непрерывны в своей области определения

x, ax, logax, sin x, cos x, tg x, ctg x, arcsin x, arcos x, arctg x, arcctg x – основные элементарные функции.

Элементарные функции из основных элементарных получаются с помощью конечного числа операций сложения, деления, умножения, суперпозиции.

 

Исследовать на непрерывность, точки разрыва

 

Функция элементарна. В своей области определения непрерывна

0 – предельная точка для ОДЗ. Но функция не определена в 0  это точка разрыва.

– разрыв II рода.

Пример

– неэлементарная функция

Определение непрерывности функции по Гейне

Функция непрерывна в точке x0, если:

1. она определена в точке x0, то есть ;

2. для последовательность .

Функция Дирихле определена, но разрывна во всех точках

Т1. Если f(x) определена в некоторой окрестности точки x0 и непрерывна в точке x0 и f(x0)>0, то такая окружность O(x0) точки x0: f(x) > 0

Теорема Больцано-Коши [о нуле]. Если функция f(x) непрерывна на сегменте [a, b], выполняется f(a)*f(b) < 0

тогда с[a, b]  f(c)=0

Теорема Больцано-Коши [о промежуточном значении]. Пусть функция f(x) непрерывна на [a;b], f(a) = , f(b) = , – между и , тогда с[a, b]:  f(с) =

Теорема Вейерштрасса 1. Если функция непрерывна на сегменте [a, b], то она ограничена на нем.

Теорема Вейерштрасса 2. Если функция непрерывна на [a, b], то она достигает на нем своих наибольшего и наименьшего значений.

Теорема Кантора. Если функция непрерывна на [a, b], то она равномерно непрерывна на [a, b].

Функция y = f(x) называется равномерно непрерывной на множестве М, если  > 0   > 0:  x1, x2  M из |x1x2|< δ => |f(x1)-f(x2)|< ε. Всякая равномерно непрерывная функция является непрерывной в каждой точке множества М. Обратное неверно. Если функция непрерывна на множестве М, то для данного ε нужное δ может быть своим для каждой т.x1. В случае равномерной непрерывности для заданного ε δ, обслуживающее все множество М.

окрестность

1 2       … n N0

x0


 

А также другие работы, которые могут Вас заинтересовать

24393. Франчайзинг — форма бизнес-партнерства 28.5 KB
  Право на использование торговой марки и знаний регулируется договором коммерческой концессии договором франчайзинга. Франчайзинг это возможность для предпринимателя зарабатывать деньги путем приобретения готовых бизнестехнологий а с другой стороны позволяет предпринимателю имеющему стабильный и прибыльный бизнес развивать его при минимальных инвестициях путем продажи права на использование торговых марок и уникальных знаний другим предпринимателям. Помимо управления отелями другим важным направлением деятельности холдинга AVRORA...
24395. Виды коммуникаций 40.5 KB
  Коммуникации проявляются главным образом в наличии информационных связей. Если они нарушены или их нет вообще нет и не может быть коммуникации. Информация это необходимое условие коммуникаций но понятие коммуникации не сводиться полностью к понятию информации или информационных связей. При одинаковой информации коммуникации складываются различным образом.
24397. Современные подходы к управлению: процессный, системный, ситуационный 27.5 KB
  Следовательно процесс управления состоит из 5 взаимосвязанных функций: 1.Организационная функция работа связанная с созданием самой организации ее структуры управления коммуникаций а так же обеспечение работы людей всеми необходимыми средствами 3. Контроль Контроль базовый элемент управления ни одну из функций нельзя рассматривать в отрыве от контроля т. Ситуационный подход состоит в том чтобы увязывать приемы управления с конкретными ситуациями.
24398. Мотивация как функция управления 27.5 KB
  В общем смысле мотивация это процесс побуждения себя и других к деятельности для достижения определенных целей. Мотивация стимулирования к деятельности процесс побуждающий к работе воздействие на человека для достижения личных коллективных и общественных целей. Мотивация как процесс состоит из 6 этапов : Возникновение потребности. Существуют различные способы мотивации : а нормативная мотивация побуждение человека к определенному поведению посредством идейнопсихологического воздействия: убеждения внушения информирования...
24399. Особенности туризма как объекта управления 26.5 KB
  Так как туристский продукт проявляется в виде услуги то его необходимыми признаком является невозможность хранения этой услуги. В отличие от материальных товаров услуги нельзя попробовать на вкус на ощупь их не увидишь и не услышишь до момента их непосредственного оказания. Неотделимость от источника и объекта услуги. Оказание услуги требует присутствия и того кто оказывает ее и того кому она оказывается.
24401. Управление через договор франчайзинга 69.5 KB
  Управление через договор франчайзинга. Термин франчайзинг имеет французские корни franchise привилегия льгота и означает в современном понимании систему договорных отношений между крупными и мелкими самостоятельными предприятиями при которой последние получают право на производство и реализацию от имени и под торговой маркой крупной фирмы определенного вида товаров и услуг. Франчайзинг как специфическая разновидность договора зародился в США. В 60е годы франчайзинг стал стратегией роста и развития гостиниц и мотелей.