40142

ОПТИМАЛЬНОЕ ОБНАРУЖЕНИЕ ДЕТЕРМИНИРОВАННЫХ СИГНАЛОВ

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

3 Тема №3 Основы теории обнаружения и различения сигналов ОПТИМАЛЬНОЕ ОБНАРУЖЕНИЕ ДЕТЕРМИНИРОВАННЫХ СИГНАЛОВ Обнаружение сигналов как статистическая задача Пусть на вход обнаружителя поступает сумма сигнала st и шума nt представляющая собой случайный непрерывный процесс 7. Дискретизация проводится в соответствии с теоремой Котельникова: для дискретизации аналогового сигнала без потерь информации частота отсчетов должна быть в...

Русский

2013-10-15

231.5 KB

95 чел.

PAGE  1


ОП

ПУ

x(t)

0

A

EMBED Equation.3  

Тема №3 Основы теории обнаружения и различения сигналов

ОПТИМАЛЬНОЕ ОБНАРУЖЕНИЕ ДЕТЕРМИНИРОВАННЫХ СИГНАЛОВ

Обнаружение сигналов как статистическая задача

Пусть на вход обнаружителя поступает сумма сигнала s(t)  и шума n(t), представляющая собой случайный непрерывный процесс

                                                      (7.1)

где s(t) - полностью известный сигнал; - случайный параметр, равный 1, когда сигнал присутствует, и равный 0, когда сигнал отсутствует; n(t) - шум с известным законом распределения.

Обнаружитель анализирует реализацию x(t) процесса (t)  в течение заранее выбранного (конечного) интервала времени Т и затем на основании анализа принимает решение: существует ли сигнал в наблюдаемой реализации или нет.

В настоящее время для решения подобных задач широко применяются методы математической статистики. Основной задачей математической статистики является установление законов распределения случайных величин на основе результатов наблюдения над этими величинами. В результате наблюдения над некоторой случайной величиной получается совокупность выборочных (x1, ..., xn) значений этой величины, называемая выборкой; число n выборочных значений, содержащихся в данной выборке, называется объемом выборки.

В случае обнаружения сигналов реализация x(t) является непрерывной функцией времени (при непрерывном или дискретном сигнале s(t) в смеси) с ограниченным спектром. Представим x(t)  выборочными значениями (x1, ..., xn), взятыми в соответствии с теоремой Котельникова с интервалом t = 1/2F,   где F - эффективная ширина спектра колебания x(t). При этом объем выборки определяется соотношением

n = T/ t = 2TF  .                                                     (7.2)

На основании анализа выборки (x1, ..., xn) обнаружитель должен оценить параметр . Очевидно точность оценки зависит от объема выборки при неограниченном времени наблюдения Т. Однако на практике Т ограничено, а с увеличением объема выборки при T = const погрешность оценки не устремляется к нулю.

Выборка, у которой n   при T = const, называется непрерывной. Вид выборки (дискретная или непрерывная) определяется удобством математического анализа. Заметим, что если для дискретной выборки какая-либо формула получена в виде суммы, то соответствующий результат для непрерывной выборки может быть получен при замене суммы интегралом, если в этой формуле положить t 0  или n   при T = const. Дискретизация проводится в соответствии с теоремой Котельникова: для дискретизации аналогового сигнала без потерь информации частота отсчетов должна быть в два раза выше верхней граничной частоты спектра сигнала.

Поскольку в задачах обнаружения оценка параметра является дискретной ( = 0 или = 1), при конечном объеме выборки можно лишь с некоторыми вероятностями высказать статистические гипотезы. Следовательно, решение задачи обнаружения сводится к проверке двух альтернативных (противоположных) статистических гипотез. Гипотеза Н1 - сигнал во входной смеси есть ( = 1) и гипотеза Н0 - сигнала нет ( = 0). При этом вероятности Р(Н1) и Р(Н0) являются соответственно априорными вероятностями наличия и отсутствия сигнала.

7.2 Ошибки при обнаружении сигнала

Вообще при обнаружении сигнала могут быть четыре ситуации:

1) правильное обнаружение (по), когда сигнал на входе обнаружителя существует и принимается решение о его наличии;

2) правильное необнаружение (пн), когда сигнала на входе нет и принимается решение об его отсутствии;

3) пропуск сигнала (проп), когда сигнал на входе существует, однако принимается решение об его отсутствии;

4) ложная тревога (лт), когда сигнала на входе нет, но принимается решение о его присутствии.

Первые две ситуации образуют событие А, соответствующее принятию безошибочного решения. Последние две ситуации образуют событие , соответствующее принятию неверного или ошибочного решения. С помощью графа исходов (рис.7.1) можно рассчитать вероятность принятия ошибочного решения или вероятность ошибки Рош  .

Рис.7.1. Граф исходов при обнаружении

На рис.7.1 обозначены:

Р(Н1), Р(Н0) - априорные вероятности наличия и отсутствия сигнала;

Рпо = Р(А/Н1) - условная вероятность правильного обнаружения, соответствующая вероятности правильного решения А при условии, что в действительности сигнал существует;

Рпн = Р(А/Н0) - условная вероятность правильного необнаружения, соответствующая вероятности правильного решения А при условии, что в действительности сигнала нет;

Рпроп = Р(/Н1) - условная вероятность пропуска, соответствующая вероятности ошибочного решения  при условии, что в действительности сигнал есть;

Рлт = Р(/Н0) - условная вероятность ложной тревоги, соответствующая вероятности ошибочного решения  при условии, что сигнала в действительности нет.

Из графа исходов непосредственно по формуле полной вероятности следует, что

Рош = Р() = Р(Н1) Р(/Н1) + Р(Н0)Р(/Н0)

или

Рош = Р(Н1) Рпроп + Р(Н0лт .                                               (7.3)

Таким образом, вероятность ошибки Рош зависит как от априорных вероятностей Р(Н1), Р(Н0), так и от условных вероятностей Рпроп , Рлт .

Рассмотренные условные вероятности Рпо , Рпн , Рпроп и Рлт  позволяют характеризовать качество оптимального обнаружения. Обычно в этих целях используют вероятности Рпо и Рлт, с учетом того, что Рпроп = 1 - Рпо и  Рпн  = 1 -  Рлт .

7.3 Критерии оптимального обнаружения и различения сигналов

Критерием оптимальности называется правило, по которому из всех возможных обнаружителей можно выбрать наилучший.

Наиболее общим критерием оптимального обнаружения является критерий Байеса, или иначе - критерий минимума среднего риска.

С точки зрения критерия Байеса оптимальным считается такой обнаружитель, который имеет минимальную вероятность ошибочных решений с учетом их «веса» или степени нежелательности.

Используя условные вероятности Рпо , Рлт  и выражение (7.3), можно записать следующее выражение для среднего риска процесса обнаружения

 ,                                           (7.4)

где Спроп и Слт - веса ошибочных решений.

Вынесем в выражении (7.4) за скобки Р(Н1проп , тогда

 ,                                            (7.5)

где 0 - весовой множитель, равный

 .

Из анализа (7.5) следует, что условие минимизации    заключается в получении максимального значения разности (Рпо - 0Рлт ), которую называют взвешенной разностью.

Таким образом,

.                                               (7.6)

Критерий Байеса является наиболее общим. На его основе, как частные случаи, могут быть получены и другие критерии.

Если принять веса ошибок одинаковыми Спроп = Слт = 1, то из (7.4) получим, что средний риск равен суммарной вероятности ошибки

.                                          (7.7)

Условие минимума суммарной вероятности ошибки (7.7) называется критерием идеального наблюдателя. Он используется при решении задач передачи сообщений, где одинаково нежелательны как пропуски, так и искажения элементов сообщения.

По аналогии с (7.6) для критерия идеального наблюдателя можно записать вместо (7.7) следующее условие оптимизации

.                                    (7.8)

В радиолокации наибольшее применение находит критерий Неймана-Пирсона, являющийся частным случаем критериев Байеса и идеального наблюдателя. Сущность критерия заключается в том, что фиксируется условная вероятность ложной тревоги Рлт , после чего максимизируется условная вероятность правильного обнаружения Рпо .

Критерий записывается в виде

Рлт = const ,   Рпо = max ,                                                           (7.9)

Широкое применение критерия Неймана-Пирсона в радиолокации объясняется тем, что:

во-первых, как правило, неизвестны априорные вероятности Р(Н0) и Р(Н1), а также Спроп и Слт ;

во-вторых, в обзорных РЛС большую часть интервала наблюдения принятый сигнал обусловлен только шумом, поэтому ложная тревога является крайне нежелательной и ее величина должна быть ограничена заранее, исходя из тактических соображений.  Обычно задают  Рлт = 10-10 …10-6 , используя выражение  Рлт  ш / Тлт ; где  ш - длительность шумового выброса, Тлт - период появления ложной тревоги.

Таким образом, в результате наблюдения выборки (x1 ,..., xn ) по выбранному критерию оптимальности должно быть получено одно из двух взаимоисключающих решений: А- сигнал есть,  - сигнала нет. Каждая возможная выборка представляется в многомерном пространстве одной точкой. Оптимальный обнаружитель должен разделить пространство выборок на два соприкасающихся пространства X и .Если точка М, соответствующая k-й выборке (x1 ,..., xn), попадает  в пространство X - принимается решение А, в противном случае - решение . В соответствии с критерием (7.6) можно записать

,       (7.10)

где р(x1 , ..., xn / = 1)  и  p(x1 , ..., xn / =0) - условные n-мерные плотности вероятности дискретной выборки (x1 , ..., xn ) при наличии сигнала ( = 1) и при его отсутствии  ( = 0) соответственно.

Выполнение условия (7.10) возможно при положительной подынтегральной разности

,

то есть

.                                            (7.11)

Следовательно, оптимальный обнаружитель должен вычислять величину

,                                         (7.12)

определяемую отношением функций правдоподобия  L( = 1) и L( = 0)  и называемую отношением правдоподобия. Если сравнить с некоторым порогом  0  , то получим правило принятия решения

 .                                                               (7.13)

Таким образом, критерием оптимального обнаружения может служить критерий отношения правдоподобия, являющийся следствием общего критерия Байеса. В соответствии с этим критерием оптимальный обнаружитель (рис.7.2) должен сформировать отношение правдоподобия (блок ОП) и подать его на пороговое устройство ПУ,  где осуществляется процедура сравнения    с порогом  0  , в результате которой выносится одно из двух возможных решений:  - нет сигнала или А - есть сигнал. Выбор какого-то частного критерия оптимальности (байесовского, идеального наблюдателя, Неймана - Пирсона) сказывается лишь на значении порога  0 , никак не влияя на основную часть обнаружителя - блок ОП, где происходит оптимальная обработка реализации x(t). В радиолокации значение порога 0  устанавливается исходя из критерия Неймана-Пирсона.

Рис. 7.2.

7.4 Обнаружение сигнала с полностью известными параметрами

на фоне белого шума. Структурные схемы обнаружителей

Рассмотрим задачу синтеза оптимального обнаружителя сигнала с полностью известными параметрами на фоне белого шума. Наблюдаемый процесс  (t) = s(t) + n(t) ,   = 0,1 , 0 t T является либо аддитивной смесью сигнала и шума (при   =1), либо одним шумом (при   =0), время наблюдения Т фиксировано. Вначале рассмотрим случай, когда наблюдение ведется в дискретные моменты времени t1 ,..., tn , при этом принимаются выборочные значения x(tk) = xk = sk + nk ,   = 0,1; k =1,2,...,n. Оптимальный обнаружитель должен формировать отношение правдоподобия

и сравнивать его с порогом 0 . Чтобы определить структуру устройства, формирующего отношение правдоподобия, необходимо конкретизировать плотности вероятности, входящие в (7.12).

Поскольку рассматриваемый белый шум описывается гауссовской плотностью вероятности, то

.                            (7.14)

Учитывая, что выборки белого шума статистически независимы, а также то, что xk  nk при = 0, имеем

.                            (7.15)

Так как сигнал является детерминированным, то распределение вероятностей выборки (x1, ... , xn ) при   = 1 остается гауссовским, однако средние значения отсчетов теперь не равны нулю, при этом

.                    (7.16)

Подставив (7.15) и (7.16) в (7.12), получим

.                                     (7.17)

Для упрощения обработки целесообразно вместо отношения правдоподобия  формировать его логарифм

 .                                             (7.18)

Перейдем к непрерывному времени наблюдения. Положим t1 =0, tn = T, кроме того, учтем, что плотность вероятности независимых гауссовских величин (7.15) при непрерывном времени наблюдения переходит в функционал плотности вероятности белого шума. Если спектральная плотности последнего равна N0/2 , а    - дисперсия гауссовских величин nk , то при переходе к непрерывному времени (от nk к n(t))  можно воспользоваться зависимостью

,     t = tktk-1                                                       (7.19)

(при t 0 , ). Подставляя (7.19) в (7.18) и переходя к пределу при t 0, получим

.

При этом правило принятия решения можно записать в следующем виде

,                                                                    (7.20)

где

 ,                                                      (7.21)

 .                                                        (7.22)

Выражение (7.21) определяет достаточную статистику y, являющуюся взаимным корреляционным интегралом между наблюдаемым процессом x(t) и копией сигнала s(t).

Выражение (7.22) определяет порог h, зависящий от 0  и отношения сигнал /шум, квадрат которого равен

.                                                 (7.23)

Формулы (7.20), (7.21),  (7.22) позволяют построить структурную схему оптимального обнаружителя в виде корреляционного приемника с пороговым устройством (рис. 7.3).

Рис. 7.3

На умножитель подается принимаемый процесс x(t) и опорный сигнал s(t), являющийся точной копией обнаруживаемого (ожидаемого) сигнала. Интегрирование произведения x(t)s(t) в течение Т дает корреляционный интеграл y. В пороговом устройстве (ПУ) производится сравнение значения корреляционного интеграла в момент ожидаемого окончания действия сигнала Т с порогом h и принимается решение о наличии или отсутствии сигнала. Начало интегрирования и его окончание совпадают по времени с началом и окончанием ожидаемого сигнала s(t), что обеспечивается устройством синхронизации (УС). Это же устройство синхронизирует работу генератора опорного сигнала (ГОС) для коррелятора.

Техническая реализация оптимального обнаружителя в виде корреляционного приемника не является единственно возможной. Корреляционный интеграл может быть сформирован также при помощи  согласованного фильтра. Его импульсная характеристика согласована с обнаруживаемым сигналом, являясь в соответствии  с выражением

hсф(t) = ks(T - t)                                                             (7.24)

“зеркальным отражением” формы сигнала (рис.7.4).

Поскольку согласованный фильтр - составная часть оптимального обнаружителя (см. рис.7.5) и максимизирует отношение сигнал/шум на выходе, его называют также оптимальным. Максимальное отношение сигнал/шум по мощности на выходе СФ достигается в момент времени Т и составляет величину

qсф = 2Еs / N0  .                                                           (7.25)

Ни один из линейных фильтров не может дать отношение сигнал/шум больше, чем согласованный фильтр (либо коррелятор). Как следует из рис.7.5, для согласованного фильтра отпадает необходимость в обеспечении синхронизации между опорным и принимаемым сигналами с точностью до фазы их высокочастотного заполнения. Это является достоинством СФ по сравнению с коррелятором.

  

Рис.7.4                                                                           Рис.7.5


 

А также другие работы, которые могут Вас заинтересовать

73945. ШКОЛЫ И МЕТОДЫ СОВРЕМЕННОГО ЛИТЕРАТУРОВЕДЕНИЯ 148.5 KB
  Гадамер утверждает что смысловые потенции текста далеко выходят за пределы того что имел в виду его создатель. Суть интерпретации для Хирша как и деконструктивистов состоит в том чтобы из знаковой системы текста создать нечто большее чем его физическое бытие создать его значение. В повседневной практике интерпретации Хирш видит подтверждение онтологического равенства всех возможных значений интерпретируемого текста.
73946. Финансы, конспект лекций 2.73 MB
  Исследование системы финансовых экономических отношений возникающих по поводу образования и использования фондов денежных средств сложный процесс. Finnci1 в переводе означают наличность доход ; в широком смысле денежные средства денежные обороты . Главное назначение финансов состоит в том чтобы путем создания денежных доходов и фондов обеспечить не только потребности государства и предприятий в денежных средствах но и контроль за расходованием финансовых ресурсов. Национальный доход страны равен валовому общественному продукту...
73947. Разрывные нарушения. Трещиноватость, кливаж 41.5 KB
  Понятия о согласном и несогласном залегании осадочных пород. Они выражаются в нарушении сплошности горных пород т.Разрывы со смещением горных пород. Часто сместитель может представлять целую зону раздробленных пород; иметь выпуклую или вогнутую форму быть волнистыми.
73949. Основы работы с базами данных: создание псевдонима, создание таблицы, изменение структуры таблицы 308 KB
  База данных (БД) - это структурированный набор постоянно хранимых данных. Постоянность означает, что данные не уничтожаются по завершении программы или пользовательского сеанса, в котором они были созданы.
73950. Геодезические работы при проектировании изысканий сооружений линейного типа (нивелирование трасс линейных сооружений) 1.69 MB
  На стадии предварительных изысканий трассирование подводящих сетей выполняют камеральным путем пользуясь имеющимися картами с целью получения плана и профиля трассы в масштабе карты. Для составления рабочего проекта производят окончательные изыскания трассы с закреплением ее на местности с необходимой детализацией элементов. Цель этой стадии изысканий получить план профиль трассы в требуемом масштабе; установить геометрические параметры трассы для строительства. Трассирование комплект геодезических работ по проложению разбивке и...
73951. Геодезические наблюдения за деформациями зданий и сооружений 890 KB
  Определение крена вертикальной оси. Определение крена вертикальной оси Геометрическая сущность измерения крена сводится к определению взаимного положения двух точек сооружения которые по техническим условиям проекта должны лежать на одной отвесной линии. Определение крена с помощью измерения линейной величины. Определение крена по вертикальной нити теодолита.
73952. Геодезические работы при вертикальной планировке строительной площадки 1.43 MB
  В результате проектирования находят отметки проектной поверхности определяют рабочие отметки показывают высоту насыпи или глубину выемки в каждой точке проекта по формуле В завершении вычисляют объем земляных работ и составляют картограмму перемещения земляных масс. Проектирование горизонтальной площадки с соблюдением баланса земляных работ метод вертикальной планировки по квадратам Последовательность геодезических работ на строительной площадке: Построение на строительной площадке сетки квадратов Создание развитие высотного съемочного...
73953. Геодезические работы в строительстве 2.45 MB
  Геодезические работы в строительстве. Организация геодезических работ в строительстве Геодезическая основа строительства Перенос на местность здания или сооружения. Организация геодезических работ в строительстве Виды геодезических работ в строительстве. На строительномонтажной площадке выполняются следующие геодезические работы.