40142

ОПТИМАЛЬНОЕ ОБНАРУЖЕНИЕ ДЕТЕРМИНИРОВАННЫХ СИГНАЛОВ

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

3 Тема №3 Основы теории обнаружения и различения сигналов ОПТИМАЛЬНОЕ ОБНАРУЖЕНИЕ ДЕТЕРМИНИРОВАННЫХ СИГНАЛОВ Обнаружение сигналов как статистическая задача Пусть на вход обнаружителя поступает сумма сигнала st и шума nt представляющая собой случайный непрерывный процесс 7. Дискретизация проводится в соответствии с теоремой Котельникова: для дискретизации аналогового сигнала без потерь информации частота отсчетов должна быть в...

Русский

2013-10-15

231.5 KB

100 чел.

PAGE  1


ОП

ПУ

x(t)

0

A

EMBED Equation.3  

Тема №3 Основы теории обнаружения и различения сигналов

ОПТИМАЛЬНОЕ ОБНАРУЖЕНИЕ ДЕТЕРМИНИРОВАННЫХ СИГНАЛОВ

Обнаружение сигналов как статистическая задача

Пусть на вход обнаружителя поступает сумма сигнала s(t)  и шума n(t), представляющая собой случайный непрерывный процесс

                                                      (7.1)

где s(t) - полностью известный сигнал; - случайный параметр, равный 1, когда сигнал присутствует, и равный 0, когда сигнал отсутствует; n(t) - шум с известным законом распределения.

Обнаружитель анализирует реализацию x(t) процесса (t)  в течение заранее выбранного (конечного) интервала времени Т и затем на основании анализа принимает решение: существует ли сигнал в наблюдаемой реализации или нет.

В настоящее время для решения подобных задач широко применяются методы математической статистики. Основной задачей математической статистики является установление законов распределения случайных величин на основе результатов наблюдения над этими величинами. В результате наблюдения над некоторой случайной величиной получается совокупность выборочных (x1, ..., xn) значений этой величины, называемая выборкой; число n выборочных значений, содержащихся в данной выборке, называется объемом выборки.

В случае обнаружения сигналов реализация x(t) является непрерывной функцией времени (при непрерывном или дискретном сигнале s(t) в смеси) с ограниченным спектром. Представим x(t)  выборочными значениями (x1, ..., xn), взятыми в соответствии с теоремой Котельникова с интервалом t = 1/2F,   где F - эффективная ширина спектра колебания x(t). При этом объем выборки определяется соотношением

n = T/ t = 2TF  .                                                     (7.2)

На основании анализа выборки (x1, ..., xn) обнаружитель должен оценить параметр . Очевидно точность оценки зависит от объема выборки при неограниченном времени наблюдения Т. Однако на практике Т ограничено, а с увеличением объема выборки при T = const погрешность оценки не устремляется к нулю.

Выборка, у которой n   при T = const, называется непрерывной. Вид выборки (дискретная или непрерывная) определяется удобством математического анализа. Заметим, что если для дискретной выборки какая-либо формула получена в виде суммы, то соответствующий результат для непрерывной выборки может быть получен при замене суммы интегралом, если в этой формуле положить t 0  или n   при T = const. Дискретизация проводится в соответствии с теоремой Котельникова: для дискретизации аналогового сигнала без потерь информации частота отсчетов должна быть в два раза выше верхней граничной частоты спектра сигнала.

Поскольку в задачах обнаружения оценка параметра является дискретной ( = 0 или = 1), при конечном объеме выборки можно лишь с некоторыми вероятностями высказать статистические гипотезы. Следовательно, решение задачи обнаружения сводится к проверке двух альтернативных (противоположных) статистических гипотез. Гипотеза Н1 - сигнал во входной смеси есть ( = 1) и гипотеза Н0 - сигнала нет ( = 0). При этом вероятности Р(Н1) и Р(Н0) являются соответственно априорными вероятностями наличия и отсутствия сигнала.

7.2 Ошибки при обнаружении сигнала

Вообще при обнаружении сигнала могут быть четыре ситуации:

1) правильное обнаружение (по), когда сигнал на входе обнаружителя существует и принимается решение о его наличии;

2) правильное необнаружение (пн), когда сигнала на входе нет и принимается решение об его отсутствии;

3) пропуск сигнала (проп), когда сигнал на входе существует, однако принимается решение об его отсутствии;

4) ложная тревога (лт), когда сигнала на входе нет, но принимается решение о его присутствии.

Первые две ситуации образуют событие А, соответствующее принятию безошибочного решения. Последние две ситуации образуют событие , соответствующее принятию неверного или ошибочного решения. С помощью графа исходов (рис.7.1) можно рассчитать вероятность принятия ошибочного решения или вероятность ошибки Рош  .

Рис.7.1. Граф исходов при обнаружении

На рис.7.1 обозначены:

Р(Н1), Р(Н0) - априорные вероятности наличия и отсутствия сигнала;

Рпо = Р(А/Н1) - условная вероятность правильного обнаружения, соответствующая вероятности правильного решения А при условии, что в действительности сигнал существует;

Рпн = Р(А/Н0) - условная вероятность правильного необнаружения, соответствующая вероятности правильного решения А при условии, что в действительности сигнала нет;

Рпроп = Р(/Н1) - условная вероятность пропуска, соответствующая вероятности ошибочного решения  при условии, что в действительности сигнал есть;

Рлт = Р(/Н0) - условная вероятность ложной тревоги, соответствующая вероятности ошибочного решения  при условии, что сигнала в действительности нет.

Из графа исходов непосредственно по формуле полной вероятности следует, что

Рош = Р() = Р(Н1) Р(/Н1) + Р(Н0)Р(/Н0)

или

Рош = Р(Н1) Рпроп + Р(Н0лт .                                               (7.3)

Таким образом, вероятность ошибки Рош зависит как от априорных вероятностей Р(Н1), Р(Н0), так и от условных вероятностей Рпроп , Рлт .

Рассмотренные условные вероятности Рпо , Рпн , Рпроп и Рлт  позволяют характеризовать качество оптимального обнаружения. Обычно в этих целях используют вероятности Рпо и Рлт, с учетом того, что Рпроп = 1 - Рпо и  Рпн  = 1 -  Рлт .

7.3 Критерии оптимального обнаружения и различения сигналов

Критерием оптимальности называется правило, по которому из всех возможных обнаружителей можно выбрать наилучший.

Наиболее общим критерием оптимального обнаружения является критерий Байеса, или иначе - критерий минимума среднего риска.

С точки зрения критерия Байеса оптимальным считается такой обнаружитель, который имеет минимальную вероятность ошибочных решений с учетом их «веса» или степени нежелательности.

Используя условные вероятности Рпо , Рлт  и выражение (7.3), можно записать следующее выражение для среднего риска процесса обнаружения

 ,                                           (7.4)

где Спроп и Слт - веса ошибочных решений.

Вынесем в выражении (7.4) за скобки Р(Н1проп , тогда

 ,                                            (7.5)

где 0 - весовой множитель, равный

 .

Из анализа (7.5) следует, что условие минимизации    заключается в получении максимального значения разности (Рпо - 0Рлт ), которую называют взвешенной разностью.

Таким образом,

.                                               (7.6)

Критерий Байеса является наиболее общим. На его основе, как частные случаи, могут быть получены и другие критерии.

Если принять веса ошибок одинаковыми Спроп = Слт = 1, то из (7.4) получим, что средний риск равен суммарной вероятности ошибки

.                                          (7.7)

Условие минимума суммарной вероятности ошибки (7.7) называется критерием идеального наблюдателя. Он используется при решении задач передачи сообщений, где одинаково нежелательны как пропуски, так и искажения элементов сообщения.

По аналогии с (7.6) для критерия идеального наблюдателя можно записать вместо (7.7) следующее условие оптимизации

.                                    (7.8)

В радиолокации наибольшее применение находит критерий Неймана-Пирсона, являющийся частным случаем критериев Байеса и идеального наблюдателя. Сущность критерия заключается в том, что фиксируется условная вероятность ложной тревоги Рлт , после чего максимизируется условная вероятность правильного обнаружения Рпо .

Критерий записывается в виде

Рлт = const ,   Рпо = max ,                                                           (7.9)

Широкое применение критерия Неймана-Пирсона в радиолокации объясняется тем, что:

во-первых, как правило, неизвестны априорные вероятности Р(Н0) и Р(Н1), а также Спроп и Слт ;

во-вторых, в обзорных РЛС большую часть интервала наблюдения принятый сигнал обусловлен только шумом, поэтому ложная тревога является крайне нежелательной и ее величина должна быть ограничена заранее, исходя из тактических соображений.  Обычно задают  Рлт = 10-10 …10-6 , используя выражение  Рлт  ш / Тлт ; где  ш - длительность шумового выброса, Тлт - период появления ложной тревоги.

Таким образом, в результате наблюдения выборки (x1 ,..., xn ) по выбранному критерию оптимальности должно быть получено одно из двух взаимоисключающих решений: А- сигнал есть,  - сигнала нет. Каждая возможная выборка представляется в многомерном пространстве одной точкой. Оптимальный обнаружитель должен разделить пространство выборок на два соприкасающихся пространства X и .Если точка М, соответствующая k-й выборке (x1 ,..., xn), попадает  в пространство X - принимается решение А, в противном случае - решение . В соответствии с критерием (7.6) можно записать

,       (7.10)

где р(x1 , ..., xn / = 1)  и  p(x1 , ..., xn / =0) - условные n-мерные плотности вероятности дискретной выборки (x1 , ..., xn ) при наличии сигнала ( = 1) и при его отсутствии  ( = 0) соответственно.

Выполнение условия (7.10) возможно при положительной подынтегральной разности

,

то есть

.                                            (7.11)

Следовательно, оптимальный обнаружитель должен вычислять величину

,                                         (7.12)

определяемую отношением функций правдоподобия  L( = 1) и L( = 0)  и называемую отношением правдоподобия. Если сравнить с некоторым порогом  0  , то получим правило принятия решения

 .                                                               (7.13)

Таким образом, критерием оптимального обнаружения может служить критерий отношения правдоподобия, являющийся следствием общего критерия Байеса. В соответствии с этим критерием оптимальный обнаружитель (рис.7.2) должен сформировать отношение правдоподобия (блок ОП) и подать его на пороговое устройство ПУ,  где осуществляется процедура сравнения    с порогом  0  , в результате которой выносится одно из двух возможных решений:  - нет сигнала или А - есть сигнал. Выбор какого-то частного критерия оптимальности (байесовского, идеального наблюдателя, Неймана - Пирсона) сказывается лишь на значении порога  0 , никак не влияя на основную часть обнаружителя - блок ОП, где происходит оптимальная обработка реализации x(t). В радиолокации значение порога 0  устанавливается исходя из критерия Неймана-Пирсона.

Рис. 7.2.

7.4 Обнаружение сигнала с полностью известными параметрами

на фоне белого шума. Структурные схемы обнаружителей

Рассмотрим задачу синтеза оптимального обнаружителя сигнала с полностью известными параметрами на фоне белого шума. Наблюдаемый процесс  (t) = s(t) + n(t) ,   = 0,1 , 0 t T является либо аддитивной смесью сигнала и шума (при   =1), либо одним шумом (при   =0), время наблюдения Т фиксировано. Вначале рассмотрим случай, когда наблюдение ведется в дискретные моменты времени t1 ,..., tn , при этом принимаются выборочные значения x(tk) = xk = sk + nk ,   = 0,1; k =1,2,...,n. Оптимальный обнаружитель должен формировать отношение правдоподобия

и сравнивать его с порогом 0 . Чтобы определить структуру устройства, формирующего отношение правдоподобия, необходимо конкретизировать плотности вероятности, входящие в (7.12).

Поскольку рассматриваемый белый шум описывается гауссовской плотностью вероятности, то

.                            (7.14)

Учитывая, что выборки белого шума статистически независимы, а также то, что xk  nk при = 0, имеем

.                            (7.15)

Так как сигнал является детерминированным, то распределение вероятностей выборки (x1, ... , xn ) при   = 1 остается гауссовским, однако средние значения отсчетов теперь не равны нулю, при этом

.                    (7.16)

Подставив (7.15) и (7.16) в (7.12), получим

.                                     (7.17)

Для упрощения обработки целесообразно вместо отношения правдоподобия  формировать его логарифм

 .                                             (7.18)

Перейдем к непрерывному времени наблюдения. Положим t1 =0, tn = T, кроме того, учтем, что плотность вероятности независимых гауссовских величин (7.15) при непрерывном времени наблюдения переходит в функционал плотности вероятности белого шума. Если спектральная плотности последнего равна N0/2 , а    - дисперсия гауссовских величин nk , то при переходе к непрерывному времени (от nk к n(t))  можно воспользоваться зависимостью

,     t = tktk-1                                                       (7.19)

(при t 0 , ). Подставляя (7.19) в (7.18) и переходя к пределу при t 0, получим

.

При этом правило принятия решения можно записать в следующем виде

,                                                                    (7.20)

где

 ,                                                      (7.21)

 .                                                        (7.22)

Выражение (7.21) определяет достаточную статистику y, являющуюся взаимным корреляционным интегралом между наблюдаемым процессом x(t) и копией сигнала s(t).

Выражение (7.22) определяет порог h, зависящий от 0  и отношения сигнал /шум, квадрат которого равен

.                                                 (7.23)

Формулы (7.20), (7.21),  (7.22) позволяют построить структурную схему оптимального обнаружителя в виде корреляционного приемника с пороговым устройством (рис. 7.3).

Рис. 7.3

На умножитель подается принимаемый процесс x(t) и опорный сигнал s(t), являющийся точной копией обнаруживаемого (ожидаемого) сигнала. Интегрирование произведения x(t)s(t) в течение Т дает корреляционный интеграл y. В пороговом устройстве (ПУ) производится сравнение значения корреляционного интеграла в момент ожидаемого окончания действия сигнала Т с порогом h и принимается решение о наличии или отсутствии сигнала. Начало интегрирования и его окончание совпадают по времени с началом и окончанием ожидаемого сигнала s(t), что обеспечивается устройством синхронизации (УС). Это же устройство синхронизирует работу генератора опорного сигнала (ГОС) для коррелятора.

Техническая реализация оптимального обнаружителя в виде корреляционного приемника не является единственно возможной. Корреляционный интеграл может быть сформирован также при помощи  согласованного фильтра. Его импульсная характеристика согласована с обнаруживаемым сигналом, являясь в соответствии  с выражением

hсф(t) = ks(T - t)                                                             (7.24)

“зеркальным отражением” формы сигнала (рис.7.4).

Поскольку согласованный фильтр - составная часть оптимального обнаружителя (см. рис.7.5) и максимизирует отношение сигнал/шум на выходе, его называют также оптимальным. Максимальное отношение сигнал/шум по мощности на выходе СФ достигается в момент времени Т и составляет величину

qсф = 2Еs / N0  .                                                           (7.25)

Ни один из линейных фильтров не может дать отношение сигнал/шум больше, чем согласованный фильтр (либо коррелятор). Как следует из рис.7.5, для согласованного фильтра отпадает необходимость в обеспечении синхронизации между опорным и принимаемым сигналами с точностью до фазы их высокочастотного заполнения. Это является достоинством СФ по сравнению с коррелятором.

  

Рис.7.4                                                                           Рис.7.5


 

А также другие работы, которые могут Вас заинтересовать

30638. Интерьер как средство характеристики героя 18.61 KB
  Интерьер его домика состоящего из шести крошечных комнат говорит о том что перед нами маленький человек очевидно небогатый который не претендует на значимость любит уют. И действительно толстоногий стол заваленный почерневшими от старинной пыли бумагами говорит о том что Василий Иванович занимается работой но делает это время от времени. О том что Василий Иванович интересуется естественными науками и физическими опытами говорит сломанная электрическая машина но это увлечение осталось в прошлом так как она до сих...
30639. «Испытание любовью» как средство характеристики героя в произведениях отечественной классики 19 века 14.36 KB
  Но можем сказать что испытание любовью открыло насколько изменился Онегин.Ещё одним героем прошедшим через испытание любовью является Печорин Лермонтова Герой нашего времени. В таких случаях жизнь мстит за себя: в крепости Печорин пытается заглушить тоску сердца любовью к дикарке Бэле но очень скоро убеждается в бесплодности своих усилий.
30640. Стихотворение М.Ю. Лермонтова «Родина». (Восприятие, истолкование, оценка.) 15.68 KB
  Лермонтова Родина. Ни в одном произведении Лермонтов не достигал такой поэтической ясности как в стихотворении Родина написанном в 1841 году. Родина отразила целый комплекс народных понятий и представлений сложившихся на протяжении столетий и выявившихся как разум народа в отличие от предрассудков предубеждений мгновенного настроения толпы или тех чувств которые несли на себе печать векового рабства и порабощения. И как богат этот опыт как он многосторонен как утонченно и благородно народное чувство и как велик его разум...
30641. Любовная лирика А.С. Пушкина. Чтение наизусть и анализ одного из стихотворений по выбору учащегося 13.5 KB
  Пушкина. Любовь в поэзии Пушкина это глубокое нравственно чистое и самоотверженное чувство облагораживающее и очищающее человека. Я помню чудное мгновенье одно из самых проникновенных трепетных гармонических стихотворений Пушкина относящихся к любовной тематике. Вновь возрождение чувств в душе поэта вновь прилив жизненных сил вновь приход творческого вдохновения: Душе настало пробужденье: И вот опять явилась ты В этом стихотворении Пушкина любовная тема сочетается с философскими раздумьями поэта о своей жизни о радости...
30642. Своеобразие художественного мира одного из поэтов Серебряного века 15.41 KB
  Символистам и футуристам Гумилев противопоставил акмеизм. Как создатель нового литературного направления, первом десятилетии ХХ века он приобрёл широкую известность. Греческое слово «акме» в переводе означало «цвести» и трансформировалось в программе акмеистов как ясность, простота, утверждение реального в жизни.
30643. Мотив дороги и его философское звучание в произведениях отечественной классики 19 века 15.53 KB
  Образ дороги в этом произведении не выходит на первый план.Образ дороги здесь традиционный символ жизненного пути. Тема дороги путешествия главного героя имеет в поэме несколько функций.
30644. Мотивы преступления и возмездия в произведениях отечественной литературы 13.83 KB
  В ней повествуется о том как некий граф Р слишком равнодушно отнёсся к возможной гибели от его пули главного героя Сильвио. Фуражка Сильвио была прострелена на вершок ото лба право своего выстрела он оставил за собой. Граф больше ценит свою жизнь больше боится возмездия Сильвио. Сильвио прекрасно понимает это поэтому приходит в дом к своему сопернику объясняется с ним при его жене.
30645. Стихотворение Маяковского Нате 14.44 KB
  Ранний лирический герой В. Достоевского Преступление и наказание в котором главный герой Родион Раскольников делит людей на тварей дрожащих и право имеющих.В данном случае лирический герой В. В то же время лирический герой легкораним.
30646. Образ маленького человека 13.58 KB
  Медный всадник это одно из первых произведений где автор пытается описать маленького человека . Пушкин очень ярко описал маленького человека этот человек не только имел свое собственное мнение но и попытался доказать его. Такой стиль речи сам по себе делал человека униженным перед всеми остальными даже равными ему по сословному признаку.