40146

ФИЛЬТРАЦИЯ ИЗМЕНЯЮЩИХСЯ ПАРАМЕТРОВ СИГНАЛА

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Полезный сигнал st является функцией времени t и многокомпонентного параметра сообщения представляющего собой векторный случайный процесс. Общая задача фильтрации заключается в том чтобы на основании априорных сведений и по наблюдаемой реализации xt процесса t для каждого момента времени t сформировать апостериорную плотность вероятности сообщения . Априорные сведения о вероятностных характеристиках сообщения и помехи nt задаются либо в форме многомерных плотностей вероятности либо в виде дифференциальных уравнений с...

Русский

2013-10-15

318 KB

24 чел.

PAGE   \* MERGEFORMAT 1

ФИЛЬТРАЦИЯ ИЗМЕНЯЮЩИХСЯ ПАРАМЕТРОВ СИГНАЛА

Постановка задачи оптимальной фильтрации

В общем случае задача фильтрации формулируется следующим образом. Наблюдается процесс (t), являющийся детерминированной функцией от полезного сигнала s(t,) и некоторой помехи n(t).

Полезный сигнал s(t,) является функцией времени t  и многокомпонентного параметра (сообщения) , представляющего собой векторный случайный процесс. Предполагаются известными функциональная зависимость сигнала от аргумента (t) и  , а также все необходимые вероятностные характеристики случайного процесса  и  помехи n(t).

Общая задача фильтрации заключается в том, чтобы на основании априорных сведений и по наблюдаемой реализации x(t)  процесса (t) для каждого момента времени t сформировать апостериорную плотность вероятности сообщения .

В большинстве случаев инженерной практики  обычно требуется получить текущую оценку , наилучшую в соответствии с выбранным критерием оптимальности. Различают несколько модификаций задачи построения оптимальных оценок. При наблюдении процесса (t) на текущем интервале времени [0,T] определяется оценка ; если   = 0, имеет место  задача текущей фильтрации; если   0 - задача фильтрации с предсказанием, или задача экстраполяции; при   0 - задача фильтрации с запаздыванием, или задача интерполяции.

Априорные сведения о вероятностных характеристиках сообщения  и помехи n(t) задаются либо в форме многомерных плотностей вероятности, либо в виде дифференциальных уравнений с заданными начальными условиями.

Уравнение наблюдения процесса (t)  имеет вид

,                                    (11.1)

где  n(t) -  гауссовский белый шум с нулевым математическим ожиданием   n(t) = 0   и     -функцией корреляции  n (t1) n (t2) = (N0/2) (t2 - t1).

Считаем, что сообщение (t) однокомпонентный случайный процесс и формируется из белого гауссовского шума n (t), имеющего нулевое математическое ожидание и одностороннюю спектральную плотность N0 .

Формирование сообщения (t) определяется дифференциальным уравнением (уравнением сообщения)

,                                (11.2)

где g (t,) - известная функция аргументов t и .

В зависимости от вида уравнений наблюдения и сообщения различают два класса задач фильтрации:

  1.  Линейная фильтрация – уравнения являются линейными относительно сообщения (t).
  2.  Нелинейная фильтрация – уравнения содержит нелинейные функции сообщения (t).

Очевидно, что линейная фильтрация является частным случаем нелинейной фильтрации. Основополагающие результаты по теории нелинейной фильтрации получены Р.Л. Стратоновичем.

Наблюдение и обработка принятого колебания (t) могут осуществляться двумя методами: в непрерывном времени (аналоговая фильтрация) и в дискретном времени (дискретная фильтрация). При дискретной обработке берутся временные отсчеты (t) с соблюдением теоремы Котельникова, например, через равноотстоящие промежутки времени  t+1 - t  = = = const (рис. 11.1).

В дискретном времени уравнения наблюдения и сообщения имеют следующий вид:

Рис. 11.1

11.2 Критерии оптимальности фильтрации

Пусть на входе фильтра наблюдается реализация процесса

                                                    (11.5)

где (t),  n(t)  - являются реализациями соответственно сообщения и шума.

Рис. 11.2

Фильтр будет оптимальным, если на его выходе формируется процесс y(t), являющийся оптимальной, т.е. наилучшей в определенном смысле, оценкой сообщения .

То, что вкладывается в понятие оптимальной оценки , определяется выбранным критерием оптимальности. Критерий оптимальности сформулируем, исходя из апостериорной плотности вероятности p(,t|x(t)), определяемой на интервале наблюдения [0,t]. Интервал наблюдения за счет роста t непрерывно увеличивается. Это приводит к увеличению объема выборки и к сужению апостериорной плотности вероятности p(,t|x(t)), характеризующей плотность вероятности сообщения (t) в конечной точке интервала наблюдения. Сужение p(,t|x(t)) соответствует уменьшению дисперсии оценки сообщения R(t) =, что является самым важным результатом фильтрации. На рис. 11.3 показано изменение апостериорной плотности вероятности p(,t|x(t)) во времени.

При гауссовском белом шуме n(t) и достаточно высоком отношении сигнал/шум , где Es -энергия сигнала, апостериорная плотность вероятности p(,t|x(t)), приближается к гауссовскому закону, для которого мода, медиана и математическое ожидание совпадают.

Рис. 11.3

Если в качестве критерия оптимальности  рассматривать получение оценки  по максимуму апостериорной плотности вероятности

p(,t|x(t)) = max ,                                                        (11.6)

то найденная таким образом оценка  является  оптимальной также по минимуму среднего значения квадрата ошибки между оценкой и передаваемым сообщением:

.                                               (11.7)

Таким образом, если в качестве оценки выбрать траекторию координаты максимума плотности вероятности p(,t|x(t)),  то оценка  будет наилучшим образом совпадать с передаваемым сообщением (t), т.е. критерии оптимальности (11.6) и (11.7) приводят к одной и той же оценке.

Оптимальной оценкой является апостериорное математическое ожидание

.                                        (11.8)

Погрешность получаемой оценки можно характеризовать апостериорной дисперсией

.                                  (11.9)

11.3 Получение сообщения из белого шума

с помощью формирующего фильтра

Для синтеза алгоритмов фильтрации необходимо, прежде всего, располагать априорными сведениями о возможном поведении (t), т.е. моделью сообщения (t). Очень удобной и адекватной многим реальным ситуациям оказывается модель (t) в виде марковского случайного процесса, частным случаем которого является гауссовский случайный процесс с нормированной корреляционной функцией

r () = exp {-||}

где   - некоторый постоянный коэффициент.

Строго говоря, для нахождения вероятностных характеристик (t) необходимо произвести статистическую обработку реализаций процесса (t), получаемого на выходе какого-нибудь датчика, например, микрофона, измерителя скорости полета, высоты. В теории фильтрации поступают иначе. Реальный датчик заменяют моделью, являющейся формирователем сообщения. Формирователь сообщения представляет собой известный фильтр, на вход которого поступает белый шум n(t) с заданной односторонней спектральной плотностью N. Этот шум n(t), называемый информационным (либо формирующим), пройдя через формирующий фильтр, создает на его выходе случайный процесс с заданными вероятностными характеристиками. Самым простым является формирующий фильтр, представляющий собой интегрирующую RC -цепь (рис.11.4,а) и предназначенный для формирования модели сообщения, используемого в телевизионных и телеметрических системах связи.

Рис. 11.4

При белом гауссовском шуме n(t) сообщение (t), являющееся выходным процессом фильтра (рис.11.4,а), также будет гауссовским процессом с корреляционной функцией и спектральной плотностью, соответственно равными

,           ,                           (11.10)

где   = 0.5 =1/RC- параметр, соответствующий полосе пропускания фильтра на уровне 0.5.

Однако, использование в дальнейшем характеристик (11.10) для нахождения структурной схемы оптимального фильтра оказалось неудобным, т.к. при этом приходится сталкиваться со значительными математическими трудностями, связанными с решением интегро-дифференциальных уравнений. Оказалось, что для преодоления этих трудностей удобнее задавать вероятностное описание сообщения (t) в виде дифференциального уравнения, связывающего (t) с n(t).

Согласно уравнению Кирхгофа, имеем

n(t) = i(t)R + (t) ,                                                       (11.11)

где  i(t)  -ток через R и С (рис. 11.4,а).

В свою очередь, ток через емкость

.                                                           (11.12)

Подставив (11.12) в (11.11) и разрешив равенство относительно производной, получим дифференциальное уравнение

.                                                 (11.13)

Дифференциальное уравнение (11.13) может быть смоделировано с помощью аналогового вычислителя (рис. 11.4,б). Действительно, образуем разность (n(t) - (t)). Эта разность, умноженная на  , согласно (11.13), равна производной  , интеграл от которой воссоздает (t).

Таким образом, уравнение (11.13) позволяет не только определить процесс (t) из информационного шума n(t), но и содержит в неявной форме вероятностные характеристики получаемого случайного процесса (t), являющегося моделью сообщения.

В качестве модели речевого сообщения часто применяется процесс (t), определяемый с помощью системы дифференциальных уравнений:

                                                (11.14)

где и 1 - постоянные коэффициенты.

Сообщение (t),  согласно уравнениям (11.14), можно рассматривать как случайное напряжение на выходе последовательно соединенных (без учета взаимной реакции) RC-фильтра нижних частот и CR - фильтра верхних частот (рис. 11.5,а), когда на вход действует белый шум n(t). Постоянные времени RC и CR - фильтров соответственно равны: 1/1 = R1C1 и 1/ = R2C2.

Рис. 11.5

Спектральная плотность и корреляционная функция процесса (t), соответственно имеют вид

;                                             (11.15)

.                                   (11.16)

Дисперсия такого  процесса (t) равна   .

На рис. 11.5,б, приведен график нормированного одностороннего спектра речевого сообщения (14.15), где – ширина этого спектра на уровне 0.5 максимального значения.

11.4 Алгоритм оптимальной аналоговой фильтрации

При рассмотрении алгоритма фильтрации  остановимся лишь на теории фильтрации одномерных марковских гауссовских процессов. Для этого частного случая уравнение наблюдения задается в виде (11.1), а уравнение сообщения - в виде (11.2).

Изменения во времени априорной плотности  вероятности р(,t) процесса (t) определяются уравнением Фоккера - Планка - Колмогорова:

.               (11.17)

L() – оператор  преобразования Фоккера-Планка-Колмогорова. Заметим, что в рассматриваемом случае имеет место однозначное соответствие между описаниями процесса (t) в виде уравнения (11.2) либо (11.17).

Располагая этими априорными данными, нужно синтезировать устройство, которое бы с наименьшей погрешностью воспроизводило изменяющееся во времени случайное сообщение (t).

Как было показано в параграфе 3 данной лекции, для вычисления оптимальной оценки (t) и ее погрешности, необходимо знать апостериорную плотность вероятности p(,t|x(t)), которая согласно формулы Байеса, определяется двумя сомножителями p(,t)  и  p(x(t)|). Плотность вероятности p(,t) фильтруемого процесса (t), удовлетворяющего уравнению сообщения (11.2), определяется из (11.17). Условная плотность вероятности  p(x(t)|) (функция правдоподобия) легко  находится из уравнения наблюдения (11.1). Так как сигнал  s(t,(t)) является известной функцией аргументов t и , а шум n(t) имеет гауссовское распределение, то и p(x(t)|) также будет гауссовской.

В работах Р.Л.Стратоновича  показано, что апостериорная плотность вероятности p(,t|x(t)) параметра (t) в конечный момент времени наблюдения определяется следующим дифференциальным уравнением

,           (11.18)

где F(t,) -   производная по времени от логарифма функции правдоподобия:

,                                                 (11.19)

 F (t, )  - усреднение F (t, ) по информационному параметру :

.                                       (11.20)

Начальные условия для уравнения Стратоновича (11.18) определяются априорной плотностью вероятности p(,0) начальной координаты сообщения (0) = 0.

Апостериорная плотность вероятности p(,t|x(t))  содержит всю доступную информацию о параметре (t),  которую можно извлечь из наблюдения реализации x(t) процесса (t) на интервале  [0,t]  и из априорных сведений о (t). Определив апостериорную плотность p(,t|x(t)), можно получить другие требуемые характеристики, например, математическое ожидание (t), представляющее оптимальную оценку сообщения по критерию минимума среднего квадрата ошибки или оценку, оптимальную по критерию максимума апостериорной плотности вероятности.

Таким образом, уравнение Стратоновича (11.18) определяет полную процедуру фильтрации сообщения (t) на фоне белого шума. В общем случае аналитическое решение этого уравнения оказывается трудной задачей, схемы оптимального фильтра при этом весьма сложны. Для получения более простых схем целесообразно использовать различные упрощающие предположения. Некоторые из них будут рассмотрены в лекции №12.


 

А также другие работы, которые могут Вас заинтересовать

66486. Исследование влияния дыхательных упражнений по методу Бутейко на процесс оздоровления школьников 116 KB
  Лечебная физкультура известна человечеству с давних времен. Широко применялась она в Египте, Риме, использовалась также некоторыми северными народами, в том числе и среди народов, населявших территорию нашей страны. Однако обоснованное применение физкультуры при инфаркте миокарда появилось сравнительно недавно.
66487. Разработка компьютерной программы при оформлении документации очного отделения - «Учебная часть РПТ» 1.54 MB
  Применение ЭВМ в учебном процессе является естественным продолжением многолетнего процесса внедрения в обучение технических средств. Обладающие высоким быстродействием, большой памятью, способностью перерабатывать информацию, поступающую одновременно от многих пользователей...
66489. Психокоррекция энуреза у детей дошкольного и младшего школьного возраста 298 KB
  В младшем школьном возрасте проблема энуреза напрямую соприкасается с проблемой адаптации к началу обучения в школе и закономерно влияет на успешность ребенка в учебной деятельности, в овладении новыми способами межличностных коммуникаций со сверстниками.
66490. СТРАТЕГІЯ УПРАВЛІННЯ АКТИВАМИ ТОРГІВЕЛЬНОГО ПІДПРИЄМСТВА 1.65 MB
  Мета роботи - розробка стратегії управління обіговими активами підприємства. Методика дослідження: методи фінансового аналізу, економіко-статистичні та економетричні методи. Одержані насідки та їх новизна: обгрунтування тактики стратегії управління активами підприємства.
66491. Исследование ономастического пространства поэзии Владимира Высоцкого 341 KB
  Ономастика как лингвистическая наука изучает основные закономерности истории, развития и функционирования имен собственных. Обладая своим материалом и методикой изучения его, ономастика не может не быть самостоятельной дисциплиной.
66492. Анализ условий выпуска и обращения ценных бумаг коммерческих банков 522.5 KB
  Целью моей работы является рассмотрение и анализ условий выпуска и обращения ценных бумаг коммерческих банков. Для достижения данной цели я поставила следующие задачи: определить понятие ценных бумаг и их виды; рассмотреть структуру, задачи и участников рынка ценных бумаг; определить роль банка на рынке ценных бумаг...
66493. МЕЖБАНКОВСКИЙ КЛИРИНГ 556.5 KB
  В соответствии с утвержденными планами модернизации платежной системы Республики Беларусь РБ в ближайшее время намечено внедрить пусковой комплекс нового проекта межбанковских расчетов в составе: системы расчетов по срочным и крупным платежам на валовой основе...
66494. ОСОБЕННОСТИ РАЗВИТИЯ ВНИМАНИЯ У ДЕТЕЙ ДОШКОЛЬНОГО ВОЗРАСТА 315.5 KB
  Внимание среди познавательных процессов занимает особенное место, поскольку оно не имеет собственного содержания, а обслуживает другие психические процессы. Внимание во многом определяет успешность их функционирования. От уровня развития свойств внимания (устойчивости, концентрации, объёма, распределения, переключения)