40503

Своеобразие фантастики в русской народной сказке

Доклад

Литература и библиотековедение

Раз исторические представления о том что возможно и невозможно меняется то меняется и представление о фантастике: с течением времени сфера фантастики расширяется а не уменьшается то что раньше не было фантастическим с течением времени может приобрести свойство сказки но назад хода нет.

Русский

2013-10-17

21 KB

3 чел.

32. Своеобразие фантастики в русской народной сказке.

Фантазия – воображение – человеческая способность что-либо вообразить, что отличает человека от животного.

Фантастика – изображение того, чего нет на самом деле и быть не может (И. Анненский «Книга отражений»), не может быть никогда, ни при каких обстоятельствах.

Фантастика базируется на понятии невозможного (общественной нормы невозможного).

Раз исторические представления о том, что возможно и невозможно меняется, то меняется и представление о фантастике:

- с течением времени сфера фантастики расширяется, а не уменьшается

- то, что раньше не было фантастическим, с течением времени может приобрести свойство сказки, но «назад хода нет».

Народная сказка есть выражение народных идеалов.


 

А также другие работы, которые могут Вас заинтересовать

22885. Алгоритм знаходження НСД 71 KB
  Поділимо на з залишком і стст якщо то процес закінчуємо інакше ділимо на при цьому стст якщо то процес закінчуємо інакше лідимо на і так далі. Оскільки на кожному кроці степінь залишку зменшується то за скінченну кількість кроків процес закінчиться.
22886. Теорема про найбільший спільний дільник 149 KB
  Доведення Припустимо і ненульові многочлени. Позначимо через таку множину многочленів зрозуміло що . Якщо і довільний многочлен який не обов’язково належить то і .
22887. Теорема про найбільший спільний дільник (доведення іншим способом) 90 KB
  Нехай і для визначеності стст. Покажемо що стст. Припустимо що стст тоді стстст що неможливо. Нехай і взаємнопрості тоді існують многочлени і такі що причому і можна вибрати так що стст стст.
22888. Схема Горнера та її застосування 109 KB
  Прирівняємо коефіцієнти при відповідних степенях маємо: Приклад застосування.
22889. Незвідні многочлени та основна теорема про подільність многочлена 63 KB
  Аналогічним чином в кільці многочленів є незвідні многочлени . Многочлен є незвідним над полем якщо з того що і слідує що степінь одного із многочленів рівна нулю тобтохоч один із многочленів рівний . Аналогічно основній теоремі арифметики будьякий многочлен відмінний від можна розкласти в добуток незвідних многочленів.
22890. ОБЛІК ДОВГОСТРОКОВИХ АКТИВІВ 120 KB
  Склад, класифікація і оцінка довгострокових активів. Методи розрахунку і облік амортизації основних засобів. Облік надходження і вибуття основних засобів. Облік природних ресурсів та їх виснаження.
22892. Рівність многочленів 82.5 KB
  Два многочлени і вважаються рівними аналітично якщо вони рівні як відображення . Два многочлени і над полем рівні тоді і тільки тоді коли вони рівні аналітично і алгебраїчно. Доведення Зрозуміло що якщо многочлени і рівні алгебраїчно то вони рівні і аналітично.
22893. Кратність коренів многочленів 47 KB
  Якщо є коренем цього многочлена то за теоремою Безу . Корінь ненульового многочлена коренем кратності якщо ділиться на і не ділиться на . Число коренів даного многочлена з урахуванням їх кратності не перевищує степеня даного многочлена. Доведення Припустимо корені многочлена кратності відповідно .