4053

Отношения и их свойства

Лабораторная работа

Информатика, кибернетика и программирование

Отношения и их свойства Бинарное отношение R на конечном множестве Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию)....

Русский

2012-11-12

185 KB

123 чел.

Отношения и их свойства

Бинарное отношение R на конечном множестве A: RÍ A2 – задано списком упорядоченных пар вида (a,b), где a,bÎ A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице бинарного отношения, сопровождая необходимыми пояснениями.

Работа программы должна происходить следующим образом:

1. На вход подается множество A из n элементов и список упорядоченных пар, задающий отношение R (мощность множества, элементы и парывводятся с клавиатуры).

2. Результаты выводятся на экран (с необходимыми пояснениями) в следующем виде:

а) матрица бинарного отношения размера n´ n;
б) список свойств данного отношения.

В матрице отношения строки и столбцы должны быть озаглавлены (элементы исходного множества, упорядоченного по возрастанию).

3. После вывода результатов предусмотреть возможность изменения заданного бинарного отношения либо выхода из программы.

Это изменение может быть реализовано различными способами. Например, вывести на экран список пар (с номерами) и по команде пользователя изменить что-либо в этом списке (удалить какую-то пару, добавить новую, изменить имеющуюся), после чего повторить вычисления, выбрав соответствующий пункт меню. Другой способ – выполнять редактирование непосредственно самой матрицы отношения, после чего также повторить вычисления. Возможным вариантом является автоматический пересчет – проверка свойств отношения – после изменения любого элемента матрицы.

Дополнительно: предусмотреть не только изменение отношения, но и ввод нового множества (размер нового множества может тоже быть другим).


Решение.

Проверять свойства бинарного отношения будем оперируя с матрицей этого отношения. Матрицу будем хранить как двумерный массив.

Алгоритм проверки на рефлексивность.

Проверяем элементы главной диагонали. Если они все равны 1, то отношение рефлексивно, иначе – не рефлексивно.

Алгоритм проверки на симметричность.

Если элементы матрицы бинарного отношения симметричны относительно главной диагонали, то и само отношение является симметричным.

Алгоритм проверки на антисимметричность.

Находим матрицу пересечения данного бинарного отношения с обратным ему отношением (обратное задаётся путём транспонирования матрицы). Если в полученной матрице все элементы вне главной диагонали равны нулю, то исходное отношение обладает свойством антисимметричности.

Алгоритм проверки на транзитивность.

Определим операцию произведения матриц следующим образом. Пусть имеются матрицы и . Произведением матрицы на матрицу будем называть матрицу , в которой .

Для проверки на транзитивность:

  1.  находим матрицу , где – матрица нашего бинарного отношения;
  2.  если для каждой строки матрицы и соответствующей строки матрицы выполняется , то исходное отношение транзитивно.

Под записью в пункте b понимается, .


Исходный код на Borland Pascal 7.

program lab2;

uses

 Crt;

const

 Nmax = 15; { Макс. количество элементов множества A }

type

 T = Char; { Тип элементов множества A }

 TPair = Record

   a, b: T;

 end;

 TSet = Array[1..Nmax] of T;

 TMatrix = Array[1..Nmax, 1..Nmax] of Byte;

{ Сортировка выбором по неубыванию }

procedure Sort(var A: TSet; const N: Integer);

var

 i, j, k: Integer;

 tmp: T;

begin

 for i := 1 to N - 1 do begin

   k := i;

   for j := i + 1 to N do

     if A[j] < A[k] then k := j;

   tmp := A[i];

   A[i] := A[k];

   A[k] := tmp;

 end;

end;

{ Возвращает индекс элемента x в A. Если такого элемента нет, то возвращает -1 }

function Search(const x: T; const A: TSet; const N: Integer): Integer;

var

 i: Integer;

begin

 for i := 1 to N do

   if x = A[i] then begin

     Search := i;

     Exit;

   end;

 Search := -1;

end;

{ Проверка на рефлексивность }

function Reflex(const M: TMatrix; const N: Integer): Boolean;

var

 i: Integer;

begin

 Reflex := False;

 for i := 1 to N do

   if M[i, i] = 0 then Exit;

 Reflex := True;

end;

{ Проверка на симметричность }

function Symmetry(const M: TMatrix; const N: Integer): Boolean;

var

 i, j: Integer;

begin

 Symmetry := False;

 for i := 1 to N - 1 do

   for j := i + 1 to N do

     if M[i, j] <> M[j, i] then Exit;

 Symmetry := True;

end;

{ Проверка на антисимметричность }

function Antisymmetry(const M: TMatrix; const N: Integer): Boolean;

var

 i, j: Integer;

begin

 Antisymmetry := False;

 for i := 1 to N do

   for j := 1 to N do

     if (i <> j) and (M[i, j] * M[j, i] <> 0) then Exit;

 Antisymmetry := True;

end;

{ Проверка на транзитивность }

function Transit(const M: TMatrix; const N: Integer): Boolean;

var

 i, j, k: Integer;

 S: TMatrix;

begin

 Transit := False;

 for i := 1 to N do

   for j := 1 to N do begin

     S[i, j] := 0;

     for k := 1 to N do

       S[i, j] := S[i, j] or M[i, k] and M[k, j];

   end;

 for i := 1 to N do

   for j := 1 to N do

      if M[i, j] < S[i, j] then Exit;

 Transit := True;

end;

{ Вывод списка клавиш управления }

procedure Keys;

begin

 ClrScr;

 WriteLn('Выберите действие.');

 WriteLn;

 WriteLn('1 - показать список элементов множества A');

 WriteLn('2 - показать список пар бинарного отношения');

 WriteLn('3 - показать матрицу бинарного отношения');

 WriteLn('4 - показать свойства бинарного отношения');

 WriteLn('5 - измененть одну пару бинарного отношения');

 WriteLn('6 - удалить одну пару бинарного отношения');

 WriteLn('7 - добавить новую пару бинарного отношения');

 WriteLn('0 - очистить экран');

 WriteLn('Esc - завершить работу');

 WriteLn

end;

var

 i, j, N, k, z: Integer;

 x, y: T;  

 A: TSet;  

 M: TMatrix;

 P: Array[1..Nmax] of TPair;

 F: Boolean;

 v: Char;

begin

 ClrScr;

 WriteLn('Введите множество A (набор элементов через пробел)');

 N := 0;

 while not SeekEoLn do begin

   Inc(N);

   Read(A[N]);

 end;

 Sort(A, N);

 F := False;

 i := 1;

 while i < N do begin

   if A[i] = A[i + 1] then begin

     F := True;

     Dec(N);

     for j := i to N do

       A[j] := A[j + 1];

   end

   else

     Inc(i);

 end;

 if F then WriteLn('Повторяющиеся элементы были удалены.');

 for i := 1 to Nmax do

   for j := 1 to Nmax do

      M[i, j] := 0;

 WriteLn;

 WriteLn('Введите список пар. Каждую пару в новой строке, элементы пары - через пробел.');

 WriteLn('Для завершения ввода, вместо ввода пары нажмите Enter.');

 Reset(Input);

 k := 0;

 while not SeekEoLn do begin

   Read(x);

   if SeekEoLn then Reset(Input);

   ReadLn(y);

   if (Search(x, A, N) = -1) or (Search(y, A, N) = -1) then begin

      WriteLn('Элементы должны быть из множества A. Эта пара будет пропущена.');

      Continue;

   end;

   F := False;

   for i := 1 to k do

     if (P[i].a = x) and (P[i].b = y) then begin

        WriteLn('Эта пара уже была. Пропущено.');

        F := True;

        Break;

     end;

   if F then Continue;

   M[Search(x, A, N), Search(y, A, N)] := 1;

   Inc(k);

   P[k].a := x;

   P[k].b := y;

 end;

 Keys;

 repeat

   v := ReadKey;

   case v of

   '1':

     begin

       WriteLn('Элементы множества A:');

       for i := 1 to N do

         Write(A[i], ' ');

       WriteLn;

     end;

   '2':

     begin

       WriteLn('Список пар бинарного отношения:');

       for i := 1 to k do

         WriteLn(i, '. (', P[i].a, ', ', P[i].b, ')');

     end;

   '3':

     begin

       WriteLn('Матрица бинарного отношения:');

       Write('    ');

       for i := 1 to N do

         Write(A[i]:3, ' ');

       WriteLn;

       for i := 1 to N do

       begin

         Write(A[i]:3, ' ');

         for j := 1 to N do

           Write(M[i, j]:3, ' ');

         WriteLn;

       end;

     end;

   '4':

     begin

       WriteLn('Введённое отношение');

       if Symmetry(M, N)     then  WriteLn('- симметрично')     else WriteLn('- не симметрично ');

       if Antisymmetry(M, N) then  WriteLn('- антисимметрично') else WriteLn('- не антисимметрично');

       if Reflex(M, N)       then  WriteLn('- рефлексивно')     else WriteLn('- не рефлексивно');

       if Transit(M, N)      then  WriteLn('- транзитивно')     else WriteLn('- не транзитивно');

     end;

   '5':

     begin

       WriteLn('Введите номер пары, которую хотите изменить.');

       {$I-}

       ReadLn(z);

       {$I+}

       while IOResult <> 0 do begin

         WriteLn('Введено неверно. Введите заново.');

         {$I-}

         ReadLn(z);

         {$I+}

       end;

       if (z > k) or (z < 1) then

         WriteLn('Нет такой пары.')

       else begin

         WriteLn('Введите новое значение пары (два элемента через пробел).');

         Reset(Input);

         Read(x);

         if SeekEoLn then Reset(Input);

         ReadLn(y);

         if (Search(x, A, N) = -1) or (Search(y, A, N) = -1) then

           WriteLn('Значения должны быть из множества A. Изменение не произведено.')

         else begin

           F := False;

           for i := 1 to k do

             if (P[i].a = x) and (P[i].b = y) then begin

               WriteLn('Эта пара уже была. Пропущено.');

               F := True;

               Break;

             end;

           if not F then begin

             M[Search(P[z].a, A, N), Search(P[z].b, A, N)] := 0;

             P[z].a := x;

             P[z].b := y;

             M[Search(x, A, N), Search(y, A, N)] := 1;

             WriteLn('Изменено.');

           end;

         end;

       end;

     end;

   '6':

     begin

       WriteLn('Введите номер пары для удаления');

       {$I-}

       ReadLn(z);

       {$I+}

       while IOResult <> 0 do begin

         WriteLn('Введено неверно. Введите заново.');

         {$I-}

         ReadLn(z);

         {$I+}

       end;

       if (z > k) or (z < 1) then

         WriteLn('Нет такой пары')

       else begin

         M[Search(P[z].a, A, N), Search(P[z].b, A, N)] := 0; { Удаляем пару из матрицы }

         Dec(k);

         for i := z to k do  { Удаляем пару из списка P }

           P[i] := P[i + 1];

         WriteLn('Удалено.');

       end;

     end;

   '7':

     begin

       WriteLn('Введите пару (два элемента через пробел)');

       Reset(Input);

       Read(x);

       if SeekEoLn then Reset(Input);

       ReadLn(y);

       if (Search(x, A, N) = -1) or (Search(y, A, N) = -1) then

         WriteLn('Значения должны быть из множества A. Добавление не произведено.')

       else begin

         F := False;

         for i := 1 to k do

           if (P[i].a = x) and (P[i].b = y) then begin

             WriteLn('Эта пара уже есть. Пропущено.');

             F := True;

             Break;

           end;

         if not F then begin

           Inc(k);

           P[k].a := x;

           P[k].b := y;;

           M[Search(P[k].a, A, N), Search(P[k].b, A, N)] := 1;

         end;

       end;

       if not F then WriteLn('Добавлено.');

     end;

     '0': Keys;

   end;

 until v = #27;

end.


Результат работы программы.


 

А также другие работы, которые могут Вас заинтересовать

37937. Изучение вынужденных колебаний в электрическом контуре 438.5 KB
  В теоретической части методических указаний изложены условия возникновения вынужденных колебаний в электрическом контуре выведено дифференциальное уравнение этого вида колебаний рассмотрены явления резонансных тока и напряжения. Для осуществления вынужденных колебаний в контур включают источник тока обладающий периодически изменяющейся ЭДС рис. в каждый момент времени сила тока во всех сечениях цепи одинакова. Перейдя от тока I к заряду q и введя обозначения: ω02=1 LС ...
37938. ИЗУЧЕНИЕ ЭЛЕКТРОНННО – ЛУЧЕВОГО ОСЦИЛЛОГРАФА 206.5 KB
  4 Устройство и принцип работы осциллографа.11 ЛАБОРАТОРНАЯ РАБОТА № 50 ИЗУЧЕНИЕ ЭЛЕКТРОНННО ЛУЧЕВОГО ОСЦИЛЛОГРАФА Цель работы Изучение устройства электронно лучевого осциллографа и знакомство с некоторыми видами наблюдений и измерений которые можно проводить с его помощью. Устройство и принцип работы осциллографа Осциллографы бывают различного типа и назначения. Например с помощью осциллографа можно найти силу тока и напряжение изучать зависимость силы тока и напряжения от времени измерять сдвиг фаз между ними сравнивать...
37939. Изучение свойств ферромагнетиков и явления магнитного гистерезиса для железа 202.5 KB
  Изучение магнитных свойств вещества. Расчет и построение кривой намагничивания, снятие петли гистерезиса и определение тепловых потерь на перемагничивание ферромагнетиков. Вычисление коэрцитивной силы и остаточной намагниченности изучаемого образца железа.
37940. ОПРЕДЕЛЕНИЕ УСКОРЕНИЯ СВОБОДНОГО ПАДЕНИЯ С ПОМОЩЬЮ ФИЗИЧЕСКОГО И МАТЕМАТИЧЕСКОГО МАЯТНИКОВ 166.5 KB
  Определение ускорения свободного падения с помощью математического маятника. Определение ускорения свободного падения с помощью оборотного маятника.Определение ускорения свободного падения с помощью математического маятника.Определение ускорения свободного падения с помощью оборотного маятника.
37941. ИЗУЧЕНИЕ КОЛЕБАНИЙ ПРУЖИННОГО МАЯТНИКА 168.5 KB
  11 Изучение свободных незатухающих колебаний пружинного маятника.11 Изучение затухающих колебаний пружинного маятника12 5. Изучение вынужденных колебаний пружинного маятника.14 ЛАБОРАТОРНАЯ РАБОТА № 10 ИЗУЧЕНИЕ КОЛЕБАНИЙ ПРУЖИННОГО МАЯТНИКА Цель работы Изучение свободных незатухающих свободных затухающих и вынужденных колебаний пружинного маятника.
37942. Изучение собственных колебаний струны 137 KB
  Колебания струны5 3.10 Лабораторная работа № 11 а Изучение собственных колебаний струны 1. Цель работы Изучение собственных колебаний струны. Колебания струны В закрепленной с обоих концов натянутой струне при возбуждении поперечных колебаний устанавливаются стоячие волны причем в местах закрепления струны должны располагаться узлы.
37943. Определение ускорения силы тяжести при свободном падении тела 374 KB
  Центростремительное ускорение соответствующее движению Земли по орбите годичное вращение гораздо меньше чем центростремительное ускорение связанное с суточным вращением Земли. Поэтому с достаточной точностью можно считать что система отсчета связанная с Землей вращается относительно инерциальных систем с постоянной угловой скоростью суточного t = 86400 с вращения Земли . Если не учитывать вращение Земли то тело лежащее на ее поверхности следует рассматривать как покоящееся сумма действующих на это тело сил равнялось бы тогда...
37944. Изучение закона сохранения энергии с помощью маятника Максвелла 188 KB
  12 Лабораторная работа № 13 Изучение закона сохранения энергии с помощью маятника Максвелла 1. Цель работы Изучение закона сохранения энергии на примере движения маятника Максвелла. Диск маятника представляет собой непосредственно сам диск и сменные кольца которые закрепляются на диске. При освобождении маятника диск начинает движение: поступательное вниз и вращательное вокруг своей оси симметрии.
37945. НАКЛОННЫЙ МАЯТНИК 252 KB
  Изучение силы трения качения. Определение коэффициента трения качения. Со стороны поверхности на тело действует сила трения FТР. Тело скользит по поверхности со скоростью на него действует сила трения совершающая отрицательную работу вследствие чего полная механическая энергия системы уменьшается т.