4053

Отношения и их свойства

Лабораторная работа

Информатика, кибернетика и программирование

Отношения и их свойства Бинарное отношение R на конечном множестве Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию)....

Русский

2012-11-12

185 KB

122 чел.

Отношения и их свойства

Бинарное отношение R на конечном множестве A: RÍ A2 – задано списком упорядоченных пар вида (a,b), где a,bÎ A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице бинарного отношения, сопровождая необходимыми пояснениями.

Работа программы должна происходить следующим образом:

1. На вход подается множество A из n элементов и список упорядоченных пар, задающий отношение R (мощность множества, элементы и парывводятся с клавиатуры).

2. Результаты выводятся на экран (с необходимыми пояснениями) в следующем виде:

а) матрица бинарного отношения размера n´ n;
б) список свойств данного отношения.

В матрице отношения строки и столбцы должны быть озаглавлены (элементы исходного множества, упорядоченного по возрастанию).

3. После вывода результатов предусмотреть возможность изменения заданного бинарного отношения либо выхода из программы.

Это изменение может быть реализовано различными способами. Например, вывести на экран список пар (с номерами) и по команде пользователя изменить что-либо в этом списке (удалить какую-то пару, добавить новую, изменить имеющуюся), после чего повторить вычисления, выбрав соответствующий пункт меню. Другой способ – выполнять редактирование непосредственно самой матрицы отношения, после чего также повторить вычисления. Возможным вариантом является автоматический пересчет – проверка свойств отношения – после изменения любого элемента матрицы.

Дополнительно: предусмотреть не только изменение отношения, но и ввод нового множества (размер нового множества может тоже быть другим).


Решение.

Проверять свойства бинарного отношения будем оперируя с матрицей этого отношения. Матрицу будем хранить как двумерный массив.

Алгоритм проверки на рефлексивность.

Проверяем элементы главной диагонали. Если они все равны 1, то отношение рефлексивно, иначе – не рефлексивно.

Алгоритм проверки на симметричность.

Если элементы матрицы бинарного отношения симметричны относительно главной диагонали, то и само отношение является симметричным.

Алгоритм проверки на антисимметричность.

Находим матрицу пересечения данного бинарного отношения с обратным ему отношением (обратное задаётся путём транспонирования матрицы). Если в полученной матрице все элементы вне главной диагонали равны нулю, то исходное отношение обладает свойством антисимметричности.

Алгоритм проверки на транзитивность.

Определим операцию произведения матриц следующим образом. Пусть имеются матрицы и . Произведением матрицы на матрицу будем называть матрицу , в которой .

Для проверки на транзитивность:

  1.  находим матрицу , где – матрица нашего бинарного отношения;
  2.  если для каждой строки матрицы и соответствующей строки матрицы выполняется , то исходное отношение транзитивно.

Под записью в пункте b понимается, .


Исходный код на Borland Pascal 7.

program lab2;

uses

 Crt;

const

 Nmax = 15; { Макс. количество элементов множества A }

type

 T = Char; { Тип элементов множества A }

 TPair = Record

   a, b: T;

 end;

 TSet = Array[1..Nmax] of T;

 TMatrix = Array[1..Nmax, 1..Nmax] of Byte;

{ Сортировка выбором по неубыванию }

procedure Sort(var A: TSet; const N: Integer);

var

 i, j, k: Integer;

 tmp: T;

begin

 for i := 1 to N - 1 do begin

   k := i;

   for j := i + 1 to N do

     if A[j] < A[k] then k := j;

   tmp := A[i];

   A[i] := A[k];

   A[k] := tmp;

 end;

end;

{ Возвращает индекс элемента x в A. Если такого элемента нет, то возвращает -1 }

function Search(const x: T; const A: TSet; const N: Integer): Integer;

var

 i: Integer;

begin

 for i := 1 to N do

   if x = A[i] then begin

     Search := i;

     Exit;

   end;

 Search := -1;

end;

{ Проверка на рефлексивность }

function Reflex(const M: TMatrix; const N: Integer): Boolean;

var

 i: Integer;

begin

 Reflex := False;

 for i := 1 to N do

   if M[i, i] = 0 then Exit;

 Reflex := True;

end;

{ Проверка на симметричность }

function Symmetry(const M: TMatrix; const N: Integer): Boolean;

var

 i, j: Integer;

begin

 Symmetry := False;

 for i := 1 to N - 1 do

   for j := i + 1 to N do

     if M[i, j] <> M[j, i] then Exit;

 Symmetry := True;

end;

{ Проверка на антисимметричность }

function Antisymmetry(const M: TMatrix; const N: Integer): Boolean;

var

 i, j: Integer;

begin

 Antisymmetry := False;

 for i := 1 to N do

   for j := 1 to N do

     if (i <> j) and (M[i, j] * M[j, i] <> 0) then Exit;

 Antisymmetry := True;

end;

{ Проверка на транзитивность }

function Transit(const M: TMatrix; const N: Integer): Boolean;

var

 i, j, k: Integer;

 S: TMatrix;

begin

 Transit := False;

 for i := 1 to N do

   for j := 1 to N do begin

     S[i, j] := 0;

     for k := 1 to N do

       S[i, j] := S[i, j] or M[i, k] and M[k, j];

   end;

 for i := 1 to N do

   for j := 1 to N do

      if M[i, j] < S[i, j] then Exit;

 Transit := True;

end;

{ Вывод списка клавиш управления }

procedure Keys;

begin

 ClrScr;

 WriteLn('Выберите действие.');

 WriteLn;

 WriteLn('1 - показать список элементов множества A');

 WriteLn('2 - показать список пар бинарного отношения');

 WriteLn('3 - показать матрицу бинарного отношения');

 WriteLn('4 - показать свойства бинарного отношения');

 WriteLn('5 - измененть одну пару бинарного отношения');

 WriteLn('6 - удалить одну пару бинарного отношения');

 WriteLn('7 - добавить новую пару бинарного отношения');

 WriteLn('0 - очистить экран');

 WriteLn('Esc - завершить работу');

 WriteLn

end;

var

 i, j, N, k, z: Integer;

 x, y: T;  

 A: TSet;  

 M: TMatrix;

 P: Array[1..Nmax] of TPair;

 F: Boolean;

 v: Char;

begin

 ClrScr;

 WriteLn('Введите множество A (набор элементов через пробел)');

 N := 0;

 while not SeekEoLn do begin

   Inc(N);

   Read(A[N]);

 end;

 Sort(A, N);

 F := False;

 i := 1;

 while i < N do begin

   if A[i] = A[i + 1] then begin

     F := True;

     Dec(N);

     for j := i to N do

       A[j] := A[j + 1];

   end

   else

     Inc(i);

 end;

 if F then WriteLn('Повторяющиеся элементы были удалены.');

 for i := 1 to Nmax do

   for j := 1 to Nmax do

      M[i, j] := 0;

 WriteLn;

 WriteLn('Введите список пар. Каждую пару в новой строке, элементы пары - через пробел.');

 WriteLn('Для завершения ввода, вместо ввода пары нажмите Enter.');

 Reset(Input);

 k := 0;

 while not SeekEoLn do begin

   Read(x);

   if SeekEoLn then Reset(Input);

   ReadLn(y);

   if (Search(x, A, N) = -1) or (Search(y, A, N) = -1) then begin

      WriteLn('Элементы должны быть из множества A. Эта пара будет пропущена.');

      Continue;

   end;

   F := False;

   for i := 1 to k do

     if (P[i].a = x) and (P[i].b = y) then begin

        WriteLn('Эта пара уже была. Пропущено.');

        F := True;

        Break;

     end;

   if F then Continue;

   M[Search(x, A, N), Search(y, A, N)] := 1;

   Inc(k);

   P[k].a := x;

   P[k].b := y;

 end;

 Keys;

 repeat

   v := ReadKey;

   case v of

   '1':

     begin

       WriteLn('Элементы множества A:');

       for i := 1 to N do

         Write(A[i], ' ');

       WriteLn;

     end;

   '2':

     begin

       WriteLn('Список пар бинарного отношения:');

       for i := 1 to k do

         WriteLn(i, '. (', P[i].a, ', ', P[i].b, ')');

     end;

   '3':

     begin

       WriteLn('Матрица бинарного отношения:');

       Write('    ');

       for i := 1 to N do

         Write(A[i]:3, ' ');

       WriteLn;

       for i := 1 to N do

       begin

         Write(A[i]:3, ' ');

         for j := 1 to N do

           Write(M[i, j]:3, ' ');

         WriteLn;

       end;

     end;

   '4':

     begin

       WriteLn('Введённое отношение');

       if Symmetry(M, N)     then  WriteLn('- симметрично')     else WriteLn('- не симметрично ');

       if Antisymmetry(M, N) then  WriteLn('- антисимметрично') else WriteLn('- не антисимметрично');

       if Reflex(M, N)       then  WriteLn('- рефлексивно')     else WriteLn('- не рефлексивно');

       if Transit(M, N)      then  WriteLn('- транзитивно')     else WriteLn('- не транзитивно');

     end;

   '5':

     begin

       WriteLn('Введите номер пары, которую хотите изменить.');

       {$I-}

       ReadLn(z);

       {$I+}

       while IOResult <> 0 do begin

         WriteLn('Введено неверно. Введите заново.');

         {$I-}

         ReadLn(z);

         {$I+}

       end;

       if (z > k) or (z < 1) then

         WriteLn('Нет такой пары.')

       else begin

         WriteLn('Введите новое значение пары (два элемента через пробел).');

         Reset(Input);

         Read(x);

         if SeekEoLn then Reset(Input);

         ReadLn(y);

         if (Search(x, A, N) = -1) or (Search(y, A, N) = -1) then

           WriteLn('Значения должны быть из множества A. Изменение не произведено.')

         else begin

           F := False;

           for i := 1 to k do

             if (P[i].a = x) and (P[i].b = y) then begin

               WriteLn('Эта пара уже была. Пропущено.');

               F := True;

               Break;

             end;

           if not F then begin

             M[Search(P[z].a, A, N), Search(P[z].b, A, N)] := 0;

             P[z].a := x;

             P[z].b := y;

             M[Search(x, A, N), Search(y, A, N)] := 1;

             WriteLn('Изменено.');

           end;

         end;

       end;

     end;

   '6':

     begin

       WriteLn('Введите номер пары для удаления');

       {$I-}

       ReadLn(z);

       {$I+}

       while IOResult <> 0 do begin

         WriteLn('Введено неверно. Введите заново.');

         {$I-}

         ReadLn(z);

         {$I+}

       end;

       if (z > k) or (z < 1) then

         WriteLn('Нет такой пары')

       else begin

         M[Search(P[z].a, A, N), Search(P[z].b, A, N)] := 0; { Удаляем пару из матрицы }

         Dec(k);

         for i := z to k do  { Удаляем пару из списка P }

           P[i] := P[i + 1];

         WriteLn('Удалено.');

       end;

     end;

   '7':

     begin

       WriteLn('Введите пару (два элемента через пробел)');

       Reset(Input);

       Read(x);

       if SeekEoLn then Reset(Input);

       ReadLn(y);

       if (Search(x, A, N) = -1) or (Search(y, A, N) = -1) then

         WriteLn('Значения должны быть из множества A. Добавление не произведено.')

       else begin

         F := False;

         for i := 1 to k do

           if (P[i].a = x) and (P[i].b = y) then begin

             WriteLn('Эта пара уже есть. Пропущено.');

             F := True;

             Break;

           end;

         if not F then begin

           Inc(k);

           P[k].a := x;

           P[k].b := y;;

           M[Search(P[k].a, A, N), Search(P[k].b, A, N)] := 1;

         end;

       end;

       if not F then WriteLn('Добавлено.');

     end;

     '0': Keys;

   end;

 until v = #27;

end.


Результат работы программы.


 

А также другие работы, которые могут Вас заинтересовать

53367. Ігрові хвилинки на уроках музики 48.5 KB
  Мета даної публікації не заглиблюючись у наукові аспекти теорії гри надати педагогові реальну допомогу на шляху впровадження ігрових форм у навчальновиховний процес. Дуже подобаються школярам варіанти психологічних ігрових вправ після проведення яких бажано аналізувати та обговорювати результати отримані під час гри.Кожній дитині надати можливість для виходу її емоцій після чого бажано алізувати та обговорювати результати отримані...
53368. Ігрові технології на уроках 39.5 KB
  Шіллер наприклад стверджував що античні ігри божественні і можуть служити ідеалом будьяких інших видів дозвілля людини. У Древньому Китаї святкові ігри відкривав імператор і сам у них брав участь. Складність визначається різноманіттям форм гри способів участі в ній партнером та алгоритмами проведення гри.
53369. Объемное моделирование и конструирование из бумаги. Игрушки из бумажных полосок 172.5 KB
  Игрушки из бумажных полосок Вид урока Урок беседа Тип урока Урок изучения нового материала Студенты преподаватели Айрапетова Мария Сергеевна Гусева Анна Павловна Ершова Дарья Дмитриевна Максимова Марина Вадимовна Государственный социальный заказ Во исполнение Закона Российской Федерации Об образовании. Добиваться: применения различных форм методов средств технологий при проведении образовательного урока; установления взаимодействия с различными субъектами образовательного процесса. Технологическая карта урока Триединые...
53370. Розвиток слухової уваги, слухової пам’яті та фонематичного сприймання у дітей дошкільного віку 68 KB
  Діти стають у коло непомітно для ведучого вони передають за спиною один одному дзвіночок. Логопед розрає дітям ведмедиків з зображенням цих предметів потім за ширмою озвучує ці предмети а діти повинні відгадати який ведмедик шумить. Дидактична гра Хто кличе Діти по черзі називають імя ведучого який стоїть до них спиною. Потім гра ускладнюється і діти кличуть ведучого: Ау то голосно то тихо в залежності від того що скаже логопед: Далеко пішли у ліс Близько пішли у ліс.
53371. Учет косвенных расходов в составе себестоимости продукции. Синтетический учёт движения нематериальных активов 22.77 KB
  Косвенные затраты — затраты, которые, в отличие от прямых затрат, не могут быть непосредственно отнесены на себестоимость одного конкретного вида продукции. Косвенные затраты относятся одновременно ко всем видам продукции и распределяются между ними условно: общепроизводственные и общехозяйственные расходы, часть расходов на продажу и др
53372. Дидактические игры как средство активизации учащихся при изучении таблицы умножения 52.5 KB
  Хочу рассказать о некоторых дидактических математических играх, которые я использую на уроках с целью активизации учащихся при формировании вычислительных навыков. Навык, как известно, приобретается в результате многократных повторений одних и тех же операций. Чтобы избежать однообразия в шлифовке табличных случаев умножения и деления, провожу упражнения в игровой, занимательной форме.
53373. Роль ігор-драматизацій в навчанні дошкільників англійської мови 97 KB
  Всі етапи роботи з казкою здійснюються разом з дітьми. Ініціативу розподілу ролей я надаю малечі (за бажанням), разом з тим, тактовно корегую їх вибір, адже дітям з низьким або середнім рівнем розвитку бажано надати роль, яка є невеличкою за обсягом, не дуже складною та не містить у собі тих мовних структур, які викликають труднощі у дитини (зокрема це стосується звуковимови), щоб не зникло бажання приймати участь у виставі.
53374. Использование деловых и ролевых игр на уроках химии для развития ключевых компетентностей учащихся 121.5 KB
  В процессе игры у детей вырабатывается привычка сосредоточиться мыслить самостоятельно развивает внимание стремление к знаниям. По спектру целевой ориентации игры подразделяются: дидактические: расширение кругозора познавательная деятельность; применение ЗУН в практической деятельности; формирование определенных умений и навыков необходимых в практической деятельности; развитие общеучебных умений и навыков; развитие трудовых навыков. В нее включаются последовательно игры и упражнения формирующие умение выделять основные характерные...