40625

Определение технической сложности проекта и уровня квалификации разработчиков

Практическая работа

Информатика, кибернетика и программирование

Каждому показателю присваивается значение Ti в диапазоне от 0 до 5 0 означает отсутствие значимости показателя для данного проекта 5 – высокую значимость. Значение TCF вычисляется по формуле TCF = 06 001 ΣTiВесi Вычислим TCF для системы регистрации табл. Показатель Вес Значение Значение с учетом веса Т1 2 3 6 Т2 1 4 4 Т3 1 4 4 Т4 1 3 3 Т5 1 3 3 Т6 05 5 25 Т7 05 5 25 Т8 2 1 2 Т9 1 5 5 Т10 1 5 5 Т11 1 4 4 Т12 1 2 2 Т13 1 1 1 ∑ 44 2 Определение уровня квалификации разработчиков Уровень квалификации разработчиков EF –...

Русский

2013-10-17

20.44 KB

12 чел.

ФГБОУ СПО «Алексеевский колледж экономики и информационных технологий»

Специальность 230103        дисциплина «Автоматизированные информационные системы»                                         3 курс

Автоматизированные информационные системы

Инструкционная карта №10

«Определение технической сложности проекта и уровня квалификации разработчиков».

Ход работы

  1.  Изучить инструкционно-технологическую карту №10
  2.  Изучить теоретические основные определения технической  сложности проекта
  3.  Определить техническую сложность проекта
  4.  Определить уровень квалификации разработчиков
  5.  Сформировать отчет по практической работе №10

4.3 Определение технической сложности проекта

Техническая сложность проекта (TCF – TechnicalComplexityFactor) вычисляется с учетом показателей технической сложности (табл.2). Каждому показателю присваивается значение Ti в диапазоне от 0 до 5 (0 означает отсутствие значимости показателя для данного проекта, 5 – высокую значимость). Значение TCF вычисляется по формуле

TCF = 0,6 + (0,01 (ΣTiВесi))

Вычислим TCF для системы регистрации (табл.).

TCF = 0,6 + (0,01 44) = 1,04

Таблица 1«Показатели технической сложности проекта TCF».

Показатель

Описание

Вес

Т1

Распределенная система

2

Т2

Высокая производительность

1

Т3

Работа конечных пользователей в режиме онлайн

1

Т4

Сложная обработка данных

1

Т5

Повторное использование кода

1

Т6

Простота установки

0,5

Т7

Простота использования

0,5

Т8

Переносимость

2

Т9

Простота внесения изменений

1

Т10

Параллелизм

1

Т11

Специальные требования к безопасности

1

Т12

Непосредственный доступ к системе со стороны внешних пользователей

1

Т13

Спец. требования к обучению пользователей

1

Таблица 2 «Показатели технической сложности системы регистрации».

Показатель

Вес

Значение

Значение с учетом веса

Т1

2

3

6

Т2

1

4

4

Т3

1

4

4

Т4

1

3

3

Т5

1

3

3

Т6

0,5

5

2,5

Т7

0,5

5

2,5

Т8

2

1

2

Т9

1

5

5

Т10

1

5

5

Т11

1

4

4

Т12

1

2

2

Т13

1

1

1

44

2 Определение уровня квалификации разработчиков

Уровень квалификации разработчиков (EF – EnvironmentalFactor) вычисляется с учетом следующих показателей (таблица 3).

Таблица 3 «Показатели уровня квалификации разработчиков».

Показатель

Описание

Вес

F1

Знакомство с технологией

1,5

F2

Опыт разработки приложений

0,5

F3

Опыт использования объектно-ориентированного подхода

1

F4

Наличие ведущего аналитика

0,5

F5

Мотивация

1

Показатель

Описание

Вес

F6

Стабильность требований

2

F7

Частичная занятость

-1

F8

Сложные языки программирования

-1

Каждому показателю присваивается значение в диапазоне от 0 до 5. Для показателей F1-F4 0 означает отсутствие, 3 – средний уровень, 5 – высокий уровень. Для показателя F5 0 означает отсутствие мотивации, 3 – средний уровень, 5 – высокий уровень мотивации. Для F6 0 означает высокую нестабильность требований, 3 – среднюю, 5 – стабильные требования. Для F7 0 означает отсутствие специалистов с частичной занятостью, 3 – средний уровень, 5 – все специалисты с частичной занятостью. Для показателя F8 0 означает простой язык программирования, 3 – среднюю сложность, 5 – высокую сложность. Значение EF вычисляется по формуле

EF = 1,4 + ( -0,03 (ΣFiВесi))

Вычислим EF для системы «безопасность» (таблица 4).

Таблица 4 Показатели уровня квалификации разработчиков системы

Показатель

Вес

Значение

Значение с учетом веса

F1

1,5

2

3

F2

0,5

4

2

F3

1

2

2

F4

0,5

4

2

F5

1

5

5

F6

2

3

6

F7

-1

0

0

F8

-1

0

0

20

EF = 1,4 + (-0,03 ∙ 20) = 0.8

В результате получаем окончательное значение UCP (UseCasePoints):

UCP = UUCP TCF EF = 83 1,04 0.8 = 69,01


 

А также другие работы, которые могут Вас заинтересовать

29028. Определение глубины заложения фундамента исходя из инженерно-геологических и гидрогеологических условий строительной площадки 31.5 KB
  Этот выбор производится на основе предварительной оценки прочности и сжимаемости грунтов по геологическим разрезам. Покажем это на примере рассмотрев 3 наиболее характерные схемы напластований грунтов приведенные на рис. Площадка сложена одним или несколькими слоями прочных грунтов при этом строительные свойства каждого последующего слоя не хуже свойств предыдущего. В этом случае глубина заложения фундамента принимается минимальной допускаемой при учёте сезонного промерзания грунтов и конструктивных особенностей сооружения рис.
29029. Учёт глубины сезонного промерзания грунтов при выборе глубины заложения фундаментов зданий и сооружений 20.5 KB
  Учёт глубины сезонного промерзания грунтов при выборе глубины заложения фундаментов зданий и сооружений. Глубина заложения фундамента из условия промерзания грунтов назначается в зависимости от их вида состояния начальной влажности и уровня подземных вод в период промерзания. Как непучинистые рассматриваются также пески мелкие и пылеватые с любой влажностью а также супеси твёрдой консистенции если уровень подземных вод во время промерзания находится от спланированной отметки земли на глубине равной расчётной глубине промерзания плюс 2 м...
29030. Определение глубины заложения фундаментов с учётом конструктивных особенностей сооружения, включая глубину прокладки подземных коммуникаций, наличие и глубину заложения соседних фундаментов 31.5 KB
  Определение глубины заложения фундаментов с учётом конструктивных особенностей сооружения включая глубину прокладки подземных коммуникаций наличие и глубину заложения соседних фундаментов. Основными конструктивными особенностями возводимого сооружения влияющими на глубину заложения его фундамента являются: наличие и размеры подвальных помещений приямков или фундаментов под оборудование; глубина заложения фундаментов примыкающих сооружений; наличие и глубина прокладки подземных коммуникаций. В зданиях с подвалом или полуподвалом а также...
29031. Определение размеров подошвы центрально нагруженных фундаментов мелкого заложения 63.5 KB
  Реактивное давление грунта по подошве жёсткого центрально нагруженного фундамента принимается равномерно распределённым интенсивностью: 1 где NoII расчётная вертикальная нагрузка на уровне обреза фундамента; GfII и GgII расчётные значения веса фундамента и грунта на его уступах см.1; А площадь подошвы фундамента. Площадь подошвы фундамента при его расчёте по второму предельному состоянию по деформациям определяется из условия: pII ≤ R 2 где R расчётное сопротивление грунта основания. Поскольку обе части неравенства 2...
29032. Определение размеров подошвы внецентренно нагруженных фундаментов мелкого заложения. Эпюры давлений под подошвой фундамента. Порядок расчёта 33 KB
  Эпюры давлений под подошвой фундамента. При расчёте давление по подошве внецентренно нагруженного фундамента принимают изменяющимся по линейному закону а его краевые значения при действии момента сил относительно одной из главных осей определяют как для случая внецентренного сжатия по формуле: 1 Подстановкой значений А=l·b W=b2l 6 и M=NII·e формула 1 приводится к виду 2 2 где NII суммарная вертикальная нагрузка на основание включая вес фундамента и грунта на его уступах; A площадь подошвы фундамента; е эксцентриситет...
29033. Гидроизоляция фундаментов. Защита подвальных помещений от сырости и подтопления подземными водами 42 KB
  Гидроизоляция фундаментов. Гидроизоляция предназначается для обеспечения водонепроницаемости сооружений антифильтрационная гидроизоляция а также защиты от коррозии и разрушения материалов фундаментов и подземных конструкций от агрессивных подземных вод антикоррозионная гидроизоляция. Гидроизоляция от сырости и грунтовых вод подвальных и заглубленных помещений является значительно более сложной выбор такой гидроизоляции зависит от гидрогеологических условий строительной площадки уровня подземных вод их агрессивности особенностей...
29034. Расчёт фундаментов по второй группе предельных состояний. Определение конечной осадки фундаментов мелкого заложения методом послойного суммирования 34 KB
  Расчёт оснований фундаментов по второй группе предельных состояний по деформациям производится исходя из условия: s ≤ su 1 где s конечная стабилизированная осадка фундамента определённая расчётом; su предельное значение осадки устанавливаемое соответствующими нормативными документами или требованиями проекта. После определения размеров подошвы фундамента и проверки условия pII ≤ R где рII среднее давление на основание по подошве фундамента a R расчётное сопротивление грунта ось фундамента совмещают с литологической колонкой...
29035. Расчёт фундаментов по второй группе предельных состояний. Определение конечной осадки фундаментов мелкого заложения методом эквивалентного слоя 31.5 KB
  Расчёт фундаментов по второй группе предельных состояний по деформациям заключается в выполнении условия s ≤ sw 1 где s конечная стабилизированная осадка фундамента определённая расчётом; sw предельное значение осадки устанавливаемое соответствующими нормативными документами или требованиями проекта. Конечная стабилизированная осадка фундамента может быть определена методом эквивалентного слоя. Осадка с учётом жёсткости и формы подошвы фундамента в случае однородного основания определяется по формуле: s=p0hэmv 2 где p0 ...
29036. Определение расчётного сопротивления грунтов основания по таблицам СНиП 23 KB
  Тип песчаного грунта пески гравелистые крупные средней крупности и т. Плотность сложения песчаного грунта плотный средней плотности рыхлый. Устанавливается по таблице в зависимости от типа песчаного грунта и его коэффициента пористости: 1 где γ – удельный вес грунта; γs – удельный вес твердых частиц; w – влажность грунта. Степень влажности песчаного грунта Sr маловлажный влажный насыщенный водой: 2 где γs – удельный вес воды.