40777

Цели и задачи автоматизации

Лекция

Производство и промышленные технологии

Обобщенная структурная схема средств измерений Автоматизация обработки измерительной информации предполагает: включение в измерительную цепь вычислительных средств серийно выпускаемых ЭВМ; разработку специализированных средств на базе микропроцессорных средств. При автоматизации сбора измерительной информации необходимо обеспечить: унификацию выходных сигналов измерительных преобразователей; программноуправляемую коммутацию сигналов на общий канал связи; автоматический выбор диапазонов измерений. При автоматизации операций...

Русский

2013-10-22

204.87 KB

174 чел.

Цели и задачи автоматизации

Под термином «автоматизация» понимается совокупность методических, технических и программных средств, обеспечивающих проведение процесса измерения без непосредственного участия человека. Цели автоматизации представлены в табл. 1.

Таблица 1

Цели автоматизации

Научные

Технические

Экономические

Социальные

  1.  Повышение эффективности и качества научных результатов за счет более полного исследования моделей
  2.  Повышение точности и достоверности результатов исследований за счет оптимизации эксперимента.

3. Получение качественно новых научных результатов, невозможных без ЭВМ.

  1.  Повышение качества продукции за счет повторяемости операций, увеличения числа измерений и получения более полных данных о свойствах изделий.
  2.  Повышение надела точности изделий за счет получения более полных данных о процессах старения и их предшественниках.
  1.  Экономия трудовых ресурсов за счет замены труда человека трудом машины.
  2.  Сокращение затрат в промышленности за счет уменьшения трудоемкости работ.
  3.  Повышение производительности труда на основе оптимального распределения работ между человеком и машиной и ликвидации неполной загрузки при эпизодическом обслуживании объекта.
  1.  Повышение интеллектуального  потенциала за счет поручения рутинных операций машине.
  2.  Ликвидация случаев занятости персонала операций в нежелательных условиях.
  3.  Освобождение человека от тяжелого физического труда и использование сэкономленного времени для удовлетворения духовных потребностей.

Задачами автоматизации являются:

  1.  устранение или минимизация «человеческого фактора» при выполнении функций системой или прибором;
  2.  достижение заданных показателей качества при реализации автоматизируемых функций.

В проблемной области измерения и контроля основными показателями качества являются точность, быстродействие, уровень автоматизации.

Под уровнем автоматизации понимают отношение числа автоматизированных функций к общему числу функций, которые необходимо выполнить.

Обобщенная структурная схема СИ, присущая любому измерительному прибору, устройству, системе, приведена на рис. 1.1. Анализ этой схемы приводит к определению основных задач автоматизации.

Рис. 1.1 Обобщенная структурная схема средств измерений

Автоматизация обработки измерительной информации предполагает:

  1.  включение в измерительную цепь вычислительных средств (серийно выпускаемых ЭВМ);
  2.  разработку специализированных средств на базе микропроцессорных средств.

При автоматизации сбора измерительной информации необходимо обеспечить:

  1.  унификацию выходных сигналов измерительных преобразователей;
  2.  программно-управляемую коммутацию сигналов на общий канал связи;
  3.  автоматический выбор диапазонов измерений.

При автоматизации операций измерительной цепи (канала) необходимо обеспечить:

  1.  прием информации;
  2.  фильтрацию;
  3.  усиление;           
  4.  аналого-цифровое преобразование.

При автоматизации передачи информации в ЭВМ необходимо обеспечить:

  1.  согласование измерительной цепи с информационной магистралью вычислительной устройства (интерфейс).

Интерфейс определяет формат передаваемой и принимаемой информации, уровни сигналов, организацию управляющих сигналов и т.д.


Автоматизация измерительного процесса

Необходимость измерения огромного количества разнообразных физических величин потребовала разработки средств измерений, позволяющих получать необходимую информацию без непосредственного участия человека, т.е. выполняющих измерения автоматически. Автоматизация позволяет обеспечить:

  1.  сбор измерительной информации в местах, недоступных для человека;
  2.  длительные, многократные измерения;
  3.  одновременное измерение большого числа величин;
  4.  измерение параметров быстропротекающих процессов;
  5.  измерения, характеризующиеся большими массивами информации и сложными алгоритмами ее обработки.

Следует различать полную и частичную автоматизацию. Процесс измерения, при котором обратная связь управления осуществляется без участия человека называется автоматическим. Если оператор является одним из звеньев в цепи получения измерительной информации - речь идет об автоматизированных измерениях.

Автоматические средства измерений в процессе своего развития прошли ряд этапов становления.

На первом этапе развития автоматизации подвергались лишь средства сбора измерительной информации и ее регистрации на аналоговых индицирующих и регистрирующих устройствах. Обработку* результатов измерений и выработку соответствующих решений и исполнительных команд осуществлял оператор. В подобных системах управления объектом средства измерений представляли собой набор отдельных измерительных приборов. В результате при измерении большого числа параметров объекта оператор был не в состоянии охватить всю полученную информацию и принять оптимальное решение по управлению объектом. Это приводило к расширению штата обслуживающего персонала, к снижению надежности и качества управления и возрастанию эксплуатационных расходов.

На втором этапе все возрастающие требования к средствам измерений, обусловленные интенсификацией потоков измерительной информации, привели к созданию информационно - измерительных систем. В отличие от измерительного прибора информационно - измерительная система обеспечивает измерение большого количества параметров объекта и осуществляет автоматическую обработку получаемой информации с помощью встроенных в систему вычислительных средств. В задачу оператора системы управления теперь стати входить только принятие решений по результатам измерений и выработка команд управления. Централизованный сбор информации и ее обработка с помощью средств вычислительной техники резко повысило производительность труда, но не освободило его от ответственности за управление объектом, обслуживаемого системой.

На третьем этапе развития появились информационно-управляющие системы и информационно - вычислительные комплексы, в которых осуществляется полный замкнутый цикл обращения информации от ее получения до обработки, принятия соответствующих решений и выдачи команд управления на объект без участия оператора. Главное достоинство таких систем заключается в том, что алгоритм работы систем стал программно - управляемым, легко перестраиваемым при изменении режимов работы или условий эксплуатации объекта. Труд оператора сводится к диагностике состояния системы управления, разработке методик измерения и программ функционирования. Выделение этапов развития СИ является приближенным и зависит от тех направлений науки и техники, в которых исследуются вопросы применения измерительной техники.

Схема процесса измерения и ее анализ с точки зрения автоматизации

Типовая схема автоматизированных измерений изображена на рис. 3.1. Объектом измерения может быть некоторый процесс, явление или устройство. Измеряемые величины воспринимаются датчиками, с выходов которых электрические сигналы поступают на коммутатор. Коммутатор повышает коэффициент использования измерительной установки при многоканальных измерениях. Опрос датчиков может быть циклическим (параметры однородны и стационарны), программным (параметры стационарны, но неоднородны) или адаптивным (параметры нестационарны).

Электрический сигнал с выбранного коммутатором датчика преобразуется в цифровой код в АЦП. Интерфейс обеспечивает сопряжение измерительного канала с ЭВМ. Далее измерительная информация подвергается обработке по заданной программе в ЭВМ и представляется в удобной форме на экране дисплея или отпечатанной на бумаге. База данных (БД) предназначена для хранения необходимой измерительной и справочной информации.

Рис. 3.1. Обобщенная структурная схема процесса автоматизированного измерения

ЦАП используется для двух целей: представление результатов измерений в аналоговой форме с дальнейшим их преобразованием в графическую форму и преобразования команд ЭВМ в аналоговые сигналы с целью управления объектом измерений. Канал управления позволяет активно воздействовать на объект (нагревать, охлаждать, облучать, деформировать, перестраивать), следя одновременно за реакцией его на эти воздействия. Наличие ЭВМ позволяет производить вычислительный эксперимент.

Процесс контроля и возможности его автоматизации

Процесс контроля сводится к проверке соответствия объекта установленным техническим требованиям. Сущность контроля (ГОСТ 16504 -81) заключается в проведении двух основных операций:

  1.  получение информации о фактическом состоянии объекта, о признаках и показателях его свойств (первичная информация);
  2.  сопоставление первичной информации с заранее установленными требованиями, нормами, критериями (вторичная информация).

Заранее установленные требования к объекту контроля могут быть представлены в виде образцового изделия или в виде перечня определенных параметров и их значений с указанием полей допуска.

Граничные значения областей состояния контролируемого параметра называют нормами.

Отличие измерения и контроля состоит в том, что при измерении измеряемую величину сравнивают с единицей определенной физической величины с целью получения количественной информации, а при контроле физический параметр сравнивают с его нормой с целью определения отклонений данного параметра (качественная характеристика объекта - “годен”-“не годен”).

Совокупность технических средств, с помощью которых выполняются операции автоматического контроля, называются системами автоматического контроля (САУ). Данные системы являются одним из основных звеньев САУ и автоматизированных систем управления технологическими процессами (АСУТП).

На рис. 3.2 приведена обобщенная структурная схема системы автоматического контроля. Кратко рассмотрим основное назначение составных частей, входящих в эту систему.

Подсистема коммутации и связи - служит для непосредственного подключения системы к объекту7 контроля. Она может осуществляться с помощью проводных или кабельных линий, либо использования высокочастотного радиоканала. В состав подсистемы входят устройства коммутации контролируемых и стимулирующих сигналов.

Подсистема ИП и генераторов испытательных воздействий - содержит преобразователи различных физических величин, нормализаторы их выходных сигналов в унифицированные электрические сигналы, а также генераторы испытательных сигналов, формирующие воздействия на объект контроля.

Подсистема согласующих преобразователей - состоит из преобразователей унифицированных аналоговых сигналов в код (АЦП - для сигналов напряжения, тока и частотно-цифровые - для частотных сигналов) и обратных преобразователей «код - аналог» для формирования испытательных воздействий.

Операционная подсистема - представляет собой специализированную ЭВМ, которая может быть выполнена на микропроцессорных комплексах БИС.

Подсистема ввода - вывода - включает устройства, обеспечивающие связь оператора с системой (пульт управления, дисплей, электрические пишущие машины и др.), устройства регистрации информации, внешние долговременные запоминающие устройства, а также средства подготовки и ввода программ, например, программ управления ЭВМ ( загрузчики, ассемблеры, редакторы, монитор и т.д.).

Принципы сопряжения ЭВМ с другими подсистемами основаны на применении стандартных каналов передачи данных.

Для измерения небольшого количества величин с относительно невысоким быстродействием, характерна структурная схема, приведенная на рис. 3.3. Выходные электрические сигналы с измерительных преобразователей (ИП) через коммутатор (КМ) поочередно поступают на передающий (выходной) преобразователь (ВП), согласующий выходы ИП с каналом связи (КС). Приемный преобразователь (ПП) выделяет информационный сигнал, который после первичной обработки и усиления на устройстве аналоговой обработки (УАО) поступает в АЦП и после преобразования - на индикатор результатов измерения (ИР). Оценку полученной информации и выработку управляющих воздействий осуществляет оператор. Данная система предназначена лишь для сбора и отображения измерительной информации.

Рис.3.3. Измерительная система с аналоговой передачей информации

Передача по КС информации в цифровой форме отличается большой помехозащищенностью. На рис. 3.4 представлена структурная схема системы с цифровой передачей информации. АЦП, выполненные по интегральной технологии, позволяют конструктивно объединять АЦП с каждым ИП объекта.

Рис. 3.4. Измерительная система с цифровой передачей информации

Это дает возможность отказаться от аналогового коммутатора, вносящего искажения, и на приемной стороне осуществлять ряд операций обработки с помощью устройства цифровой обработки (УЦО), такие как усреднение, сравнение, вычитание, накопление и хранение информации.

Для организации управления процессом измерения вводится логическое управляющее устройство с “жестким” алгоритмом – “приборный контроллер”, автоматически задающий длительность такта измерения, управление регистрацией и цифровой обработкой результатов измерений. Введение в систему уже довольно простых вычислительных средств значительно расширяют ее возможности по обработке информации. Введение микропроцессорного контроллера позволяет сделать более гибким алгоритм работы и при этом отказаться от блока УЦО, т.к. контроллеры в таком случае могут обрабатывать информацию.

Структуры сопряжения приборов и устройств с ЭВМ.

Система, имеющая интерфейс радиального типа, состоит из отдельных приборов, измеряющих значения ограниченного числа исследуемых физических величин (рис. 3.5).

Рис.3.5. Обобщенная структура ИС с ЭВМ (радиальный интерфейс)

Передача информации от приборов к ЭВМ происходит под управлением специальной программы и требует создания для каждого из них специфического интерфейса, т.к. каждый прибор соединяется с ЭВМ индивидуальным кабелем.

Недостатки радиальной структуры сопряжения:

  1.  ЭВМ должна иметь столько входов, сколько к ней подключено устройств;
  2.  Громоздкость структуры;

3. Ограничение возможности перестройки и наращивания системы.

Магистральная структура сопряжения характеризуется наличием сквозного канала передачи данных (системного канала обмена информацией), равноправием всех подключенных устройств и асинхронным принципом обмена.

Каждое из подключенных устройств может быть передатчиком информации, приемником или контроллером. Это позволяет на основе ограниченной номенклатуры приборов и устройств создавать разнообразные системы.

Канал передачи данных (магистральный интерфейс) распределяет информацию между отдельными элементами системы (устанавливается очередность их работы).

В измерительном приборостроении широкое распространение получила магистральная структура канала, приведенная на рис. 3.6. системный контроллер координирует работу отдельных элементов системы и осуществляет изменение форматов данных и команд в процессе обмена с ЭВМ;

шинная система линий связи - передает сигналы (информационные и управляющие);

Рис.3.6. Структура канала передачи данных (магистральный интерфейс)

интерфейсные схемы обмена (ИСО) - связаны с шинной системой канала и измерительными преобразователями (ИП). Они обеспечивают информационную совместимость.

Примерами стандартных магистральных интерфейсов могут служить: интерфейс МЭК и система КАМАК, принципы построения которых рассмотрим ниже.

Структурная схема ИС с микропроцессорной обработкой информации и управлением

Система (рис. 3.7) содержит аналоговую измерительную подсистему (АИП), операционную подсистему и подсистему- ПВВ.

Измеряемые физические величины Xi с помощью первичных преобразователей ПИП преобразуются в аналоговые сигналы У1 , поступающие в подсистему ИЦ (измерительные аналоговые цепи), где подвергаются норматизации и первичной обработке.

В состав ИЦ входят: аналоговые коммутаторы, фильтры, детекторы, предусилители и т.д.

Унифицированный сигнал yi, поступает на входной преобразователь АЦП.

Операционная подсистема (ОП) - предназначена для цифровой обработки кодов АЦП, а также формирует управляющие воздействия для всех узлов системы. В качестве ОП могут использоваться мини-ЭВМ (для ИВК) или микро-ЭВМ (для ИИС).

В системах высокой производительности широкое применение получили одноплатные ЭВМ и микропроцессорные машины на основе микропроцессорных комплексов БИС (МПК БИС).

Рис. 3.7. Обобщенная структурная схема ИС с микропроцессорной обработкой информации

Подсистема ПВБ выполняет функции: регистрации результатов обработки на цифровых индикаторах, экранах дисплеев; документирование информации; оперативный ввод программ с магнитных дисков и т.д.; ручное управление системой с помощью пультового терминала, формирование управляющих и исполнительных сигналов обратной связи с объектом исследования.

Особое значение в системе имеет организация связи между ее подсистемами.

Обмен информацией между подсистемами осуществляется в цифровой форме через системный канал обмена (измерительная информация и результаты ее обработки, команды, адреса, сигналы управления и т.д.). Информационная совместимость между устройствами системы обеспечивается интерфейсными схемами обмена.


 

А также другие работы, которые могут Вас заинтересовать

32727. Кинематика точки. Путь. Перемещение. Скорость и ускорение. Их проекции на координатные оси. Вычисление пройденного пути. Средние значения 28.5 KB
  Скорость и ускорение. Скорость векторная физическая величина характеризующая быстроту перемещения тела численно равная отношению перемещения за малый промежуток времени к величине этого промежутка. Промежуток времени считается достаточно малым если скорость при неравномерном движении в течение этого промежутка не менялась. Измеряют скорость спидометром.
32728. Скорость и ускорение при криволинейном движении. Тангенциальное и нормальное ускорения 37 KB
  Криволинейное движение с постоянным ускорением всегда происходит в той плоскости в которой находятся векторы ускорения и начальные скорости точки. В случае криволинейного движения с постоянным ускорением в плоскости xOy проекции vxи vy ее скорости на оси Ox и Oy и координаты x и y точки в любой момент времени t определяется по формулам vx=v0xxt x=x0v0xtxtxt2 2; vy=v0yyt y=y0v0ytyt2 2 Частным случаем криволинейного движения – является движение по окружности. Движение по окружности даже равномерное всегда есть движение...
32729. Кинематика твёрдого тела. Вращение вокруг неподвижной оси. Угловые скорость и ускорения. Связь между угловыми и линейными скоростями и ускорениями 39 KB
  Кинематика твёрдого тела. Движение тела может быть как поступательным так и вращательным. При поступательном движении все точки твердого тела за один и тот же промежуток времени совершают равные по величине и направлению перемещения. Следовательно скорости и ускорения всех точек тела в любой момент времени также одинаковы.
32730. Границы применимости ньютоновской механики. Первый закон Ньютона 28.5 KB
  Первый закон Ньютона. Вследствие развития физики в начале XX века определилась область применения классической механики: ее законы выполняются для движений скорость которых много меньше скорости света. Вообще законы классической механики Ньютона справедливы для случая инерциальных систем отсчета. При ускоренном движении неинерциальной системы координат относительно инерциальной системы первый закон Ньютона закон инерции в этой системе не имеет места – свободные тела в ней будут с течением времени менять свою скорость движения.
32731. Масса и импульс. Второй закон Ньютона как уравнение движения 37.5 KB
  Масса скал. тела масса – величина аддитивная т. масса системы рана сумме масс материальных тел входящих в состав этой системы при любых воздействиях выполняется закон сохранения массы: суммарная масса взаимодействующих тел до взаимодействия и после равны между собой. инерции точка в которой может считаться масса всего тела при поступательном движении данного тела.
32732. Третий закон Ньютона. Центр масс. Уравнение движения центра масс 30.5 KB
  Центр масс. Уравнение движения центра масс. Сам закон: Тела действуют друг на друга с силами имеющими одинаковую природу направленными вдоль одной и той же прямой равными по модулю и противоположными по направлению: Центр масс это геометрическая точка характеризующая движение тела или системы частиц как целого. Определение Положение центра масс центра инерции в классической механике определяется следующим образом: где радиусвектор центра масс радиусвектор iй точки системы масса iй точки.
32733. Сила тяжести и вес тела. Упругие силы. Силы трения 43.5 KB
  Силы трения. Сила трения Трение – один из видов взаимодействия тел. Трение как и все другие виды взаимодействия подчиняется третьему закону Ньютона: если на одно из тел действует сила трения то такая же по модулю но направленная в противоположную сторону сила действует и на второе тело. Силы трения как и упругие силы имеют электромагнитную природу.
32734. Законы сохранения. Силы внутренние и внешние. Замкнутая система. Сохраняющиеся величины. Связь законов сохранения со свойствами пространства и времени 32.5 KB
  Силы внутренние и внешние. Внешние и внутренние силы Внешняя сила это мера взаимодействия между телами. В задачах сопротивления материалов внешние силы считаются всегда заданными. Внешние силы делятся на объемные и поверхностные.
32735. Закон сохранения импульса. Реактивное движение. Движение тела с переменной массой 36 KB
  импульс p замкнутой системы не изменяется с течением времени т. Однородность пространства проявляется в том что физические свойства замкнутой системы и законы ее движения не зависят от выбора положения начала координат инерциальной системы отсчета т. не изменяются при параллельном переносе в пространстве замкнутой системы отсчета как целого. Если система не замкнутая но действующие на нее внешние силы таковы что их равнодействующая равна 0 то согласно законам Ньютона импульс системы не изменяется с течением времени p=const.