40793

Взаимная индуктивность. Идеальный трансформатор

Лекция

Физика

Идеальный трансформатор Электрические цепи могут содержать элементы индуктивно связанные друг с другом. Такие элементы могут связывать цепи электрически гальванически разделенные друг от друга. В том случае когда изменение тока в одном из элементов цепи приводит к появлению ЭДС в другом элементе цепи говорят что эти два элемента индуктивно связаны а возникающую ЭДС называют ЭДС взаимной индукции. Степень индуктивной связи элементов характеризуется коэффициентом связи 1 где М взаимная индуктивность элементов цепи размерность ...

Русский

2013-10-22

76.91 KB

10 чел.

Лекция 11-12 Взаимная индуктивность. Идеальный трансформатор

Электрические цепи могут содержать элементы, индуктивно связанные друг с другом. Такие элементы могут  связывать цепи, электрически (гальванически) разделенные друг от друга.

В том случае, когда изменение тока в одном из элементов цепи приводит к появлению ЭДС в другом элементе цепи, говорят, что эти два элемента индуктивно связаны, а возникающую ЭДС называют ЭДС взаимной индукции. Степень индуктивной связи элементов характеризуется коэффициентом связи

,

(1)

где М – взаимная индуктивность элементов цепи (размерность – Гн);  и  -собственные индуктивности этих элементов.

Следует отметить, что всегда к<1.

Пусть имеем две соосные катушки в общем случае с ферромагнитным сердечником (см. рис. 1). На рис. 1 схематично показана картина магнитного поля при наличии тока i1 в первой катушке (направление силовых линий магнитного потока определяется по правилу правого буравчика). Витки первой катушки сцеплены с магнитным потоком самоиндукции Ф11 , а витки второй катушки – с магнитным потоком взаимной индукции Ф21, который отличается от Ф11 (Ф21< Ф11) за счет потоков рассеяния.

По определению ;

(2)

 

.

(3)

Если теперь наоборот пропустить ток i2 по второй катушке, то соответственно получим

;

(4)

 

.

(5)

При этом

.

(6)

Следует отметить, что коэффициент связи мог бы быть равным 1, если бы  и , то есть когда весь поток, создаваемый одной катушкой, полностью пронизывал бы витки другой катушки. Практически даже различные витки одной и той же катушки пронизываются разными потоками. Поэтому с учетом рассеяния  и . В этой связи

 

.

Рассмотрим цепь переменного тока на рис. 2, в которую последовательно включены две катушки индуктивности  и , индуктивно связанные друг с другом, и резистор R.

При изменении тока i в цепи в катушках индуцируются ЭДС само- и взаимоиндукции. При этом ЭДС взаимной индукции должна по закону Ленца иметь такое направление, чтобы препятствовать изменению потока взаимной индукции.

Тогда, если в цепи протекает гармонически изменяющийся ток , то в первой катушке индуцируется ЭДС

,

(7)

а во второй –

.  

(8)

Катушки можно включить так, что ЭДС самоиндукции будет суммироваться с ЭДС взаимоиндукции; при переключении одной из катушек ЭДС взаимоиндукции будет вычитаться из ЭДС самоиндукции. Один из зажимов каждой катушки на схеме помечают, например точкой или звездочкой. Этот знак означает, что при увеличении, например, тока в первой катушке, протекающего от точки, во второй катушке индуцируется ЭДС взаимоиндукции, действующая от другого конца к точке. Различают согласное и встречное включения катушек. При согласном включении токи в катушках одинаково ориентированы по отношению к их одноименным зажимам. При этом ЭДС само- и взаимоиндукции складываются – случай, показанный на рис. 2. При встречном включении катушек токи ориентированы относительно одноименных зажимов различно. В этом случае ЭДС само- и взаимоиндукции вычитаются. Таким образом, тип включения катушек (согласное или встречное) определяются совместно способом намотки катушек и направлении токов в них.

Перейдя к комплексной форме записи (7) и (8), получим

;   

(9)

 

,  

(10)

где  - сопротивление взаимоиндукции (Ом).

Для определения тока в цепи на рис. 2 запишем

,

откуда

.

Воздушный (линейный) трансформатор

Одним из важнейших элементов электрических цепей является трансформатор, служащий для преобразования величин токов и напряжений. В простейшем случае трансформатор состоит из двух гальванически несвязанных и неподвижных катушек без ферромагнитного сердечника. Такой трансформатор называется воздушным. Он является линейным. Наличие ферромагнитного сердечника обусловило бы нелинейные свойства трансформатора.

На рис. 3 представлена схема замещения трансформатора, первичная обмотка которого включена на напряжение U1, а от вторичной обмотки получает питание приемник с сопротивлением .

В трансформаторе энергия из первичной цепи передается во вторичную посредством магнитного поля. Если в первичной цепи под действием напряжения источника возникает переменный ток, то во вторичной цепи за счет магнитной связи катушек индуцируется ЭДС, вызывающая протекание тока в нагрузке.

По второму закону Кирхгофа для первичной и вторичной цепей трансформатора можно записать

;

.

Таким образом, уравнения воздушного трансформатора имеют вид:

;        

(11)

,    .

(12)

где  и  - активные сопротивления обмоток; .

Если уравнения (11) и (12) решить относительно , предварительно подставив в (12)  и обозначив ; , то получим

,

(13)

где ;  - вносимые активное и реактивное сопротивления.

Таким образом, согласно (13) воздушный трансформатор со стороны первичной обмотки может рассматриваться как двухполюсник с сопротивлением .

Баланс мощностей в цепях с индуктивно связанными элементами

Пусть имеем схему по рис. 4, где А – некоторый активный четырехполюсник. Для данной цепи можно записать

;

.

Обозначим токи  и  как: ; .

Тогда для комплексов полных мощностей первой и второй ветвей соответственно можно записать:

       ;

.

Рассмотрим в этих уравнениях члены со взаимной индуктивностью:

    

(14)

 .

(15)

где .

Из (14) и (15) вытекает, что

;   

(16)

.  

(17)

Соотношение (16) показывает, что активная мощность передается от первой катушки ко второй. При этом суммарная реактивная мощность, обусловленная взаимной индукцией, равна нулю, т.к. . Это означает, что на общий баланс активной мощности цепи индуктивно связанные элементы не влияют.

Суммарная реактивная мощность, обусловленная взаимоиндукцией, равна

.

Таким образом, общее уравнение баланса мощностей с учетом индуктивно связанных элементов имеет вид

,        

(18)

где знак “+”  ставится при согласном включении катушек, а “-” – при встречном.

Расчет разветвленных цепей при наличии взаимной индуктивности может быть осуществлен путем составления уравнений по законам Кирхгофа или методом контурных токов. Непосредственное применение метода узловых потенциалов для расчета таких цепей неприемлемо, поскольку в этом случае ток в ветви зависит также от токов других ветвей, которые наводят ЭДС взаимной индукции.

В качестве примера расчета цепей с индуктивно связанными элементами составим контурные уравнения для цепи на рис. 5:

Чтобы обойти указанное выше ограничение в отношении применения метода узловых потенциалов для расчета рассматриваемых схем можно использовать эквивалентные преобразования, которые иллюстрируют схемы на рис. 6, где цепь на рис. 6,б эквивалентна цепи на рис. 6,а. При этом верхние знаки ставятся при согласном включении катушек, а нижние – при встречном.

 

 



 

А также другие работы, которые могут Вас заинтересовать

84546. Характер і механізми впливів парасимпатичних нервів на діяльність серця. Роль парасимпатичних рефлексів в регуляції серцевої діяльності 44.78 KB
  Механізм впливів блукаючого нерва на серце повязаний із дією медіатора ацетилхоліну на мхолінорецептори КМЦ типових і атипових. В результаті підвищується проникність мембран КМЦ для йонів калію посилення виходу йонів із клітини за градієнтом концентрації що в свою чергу веде до: розвитку гіперполяризації мембран КМЦ; найбільше цей ефект виражений в клітинах з низьким вихідним рівнем мембранного потенціалу найбільше в вузлах АКМЦ: пазуховопередсердному та передсердношлуночковому де МПС = 60мВ; менше в КМЦ передсердь; найменше ...
84547. Гуморальна регуляція діяльності серця. Залежність діяльності серця від зміни йонного складу крові 44.41 KB
  Залежність діяльності серця від зміни концентрації йонів в плазмі крові. Найбільше клінічне значення має вплив йонів калію. При гіпокаліємії зниження концентрації йонів калію в плазмі крові нижче 1ммоль л розвиваються різноманітні електрофізіологічні зміни в КМЦ. Характер змін в КМЦ залежить від того що переважає: втрата йонів калію клітинами чи міжклітинною рідиною.
84548. Особливості структури і функції різних відділів кровоносних судин у гемодинаміці. Основний закон гемодинаміки 52.71 KB
  При такому підході видно що кровоносна система є замкненою системою в яку послідовно входять два насоси і судини легень і паралельно судини решти областей. Судини у системі крові виконують роль шляхів транспорту. Рух крові по судинам описує основний закон гемодинаміки: де Р1 тиск крові на початку судини Р2 в кінці судини R тиск який здійснює судина току крові Q обємна швидкість кровотоку обєм який проходить через поперечний переріз судини за одиницю часу. Отже рівняння можна прочитати так: обєм крові що проходить...
84549. Значення в’язкості крові для гемодинаміки. Особливості структури та функції різних відділів судинної системи 44 KB
  Вязкість крові залежить від таких 2ох факторів. Від зміни лінійної швидкості руху крові. Вязкість крові складає 45 50 умовних одиниць а плазми 17 23 гривні.
84550. Лінійна і об’ємна швидкості руху крові у різних ділянках судинного русла. Фактори, що впливають на їх величину 41.83 KB
  Обємна швидкість руху крові той обєм крові котрий проходить через поперечний переріз судини за одиницю часу. Замкнута система кровообігу може нормально функціонувати лише при умові що обємна швидкість кровотоку в будьякій ділянці однакова. Лінійна швидкість руху крові швидкість руху частинок крові відносно стінок судини. Оскількм ХОК в різних ділянках однаковий лінійна швидкість кровотоку визначається площею поперечного перерізу.
84551. Кров’яний тиск і його зміни у різних відділах судинного русла 41.24 KB
  Головним фактором який впливає на формування кровяного тиску є ЗПОзагальний периферичний опір сумарний опір всіх судин великого кола кровообігу. Він забезпечує падіння тиску крові з 100 в аорті до 0 мм рт. Оцінити внесок судин різних областей в його створення можна по падінню тиску ΔР крові на рівні цих судин так як ΔР = Q R а Q в даний момент часу однаковий в будьякій ділянці судинної системи аорта всі артеріоли всі капіляри всі венули і т. Загальне зниження тиску на ділянці аорта нижня порожниста вена складає 100 мм.
84552. Артеріальний тиск, фактори, що визначають його величину. Методи реєстрації артеріального тиску 43.25 KB
  Методи реєстрації артеріального тиску.; 4 Середньодинамічний рівень тиску який забезпечував би ту ж величину ХОК Q яка має місце в реальних умовах якби не було б коливань артеріального тиску. Фактори що визначають величину артеріального тиску: 1. ХОК нагнітальна функція лівого серця більше впливає на рівень систолічного тиску; 2.
84553. Кровообіг у капілярах. Механізми обміну рідини між кров’ю і тканинами. 43.5 KB
  Механізми обміну рідини між кровю і тканинами. Кількість речовин які ідуть за механізмом дифузії з капіляра в капіляр однакові Час протягом якого кров перебуває в капілярі достатня для того щоб повністю вирівнялись концентрації різних речовин в крові і в інтерстеціальної рідини. В капілярах відбувається обмін рідини між кровю та тканинами також за механізмом фільтраціїрезорбції. При цьому рух рідини через стінку капіляра проходить за градієнтом концентрації який утворюється внаслідок складання чотирьох сил: Ронк.
84554. Кровоток у венах, вплив на нього гравітації. Фактори, що визначають величину венозного тиску 43.4 KB
  Фактори що визначають величину венозного тиску. Фактором який викликає розтягування вен і депонування в них крові є трансмуральний тиск різниця гідростатичного тиску крові та оточуючих тканин. Трансмуральний тиск значно зростає у венах розміщених нижче серця при вертикальній позі людини оскільки до власного гідростатичного тиску крові створюється насосною функцією серця приєднується гідростатичний тиск стовпа рідини у венах. Збільшення трансмурального тиску розтягує вени і сприяє депонуванню крові при переході з горизонтального...