40798

Линейные электрические цепи при несинусоидальных периодических токах

Лекция

Физика

Линейные электрические цепи при несинусоидальных периодических токах. Причины возникновения несинусоидальных напряжений и токов могут быть обусловлены или несинусоидальностью источника питания или и наличием в цепи хотя бы одного нелинейного элемента. Кроме того в основе появления несинусоидальных токов могут лежать элементы с периодически изменяющимися параметрами. Характеристики несинусоидальных величин Для характеристики несинусоидальных периодических переменных служат следующие величины и коэффициенты приведены на примере...

Русский

2013-10-22

64.74 KB

11 чел.

Лекция 18. Линейные электрические цепи при несинусоидальных периодических токах.

Предыдущие лекции были посвящены анализу электрических цепей при синусоидальных токах и напряжениях. На практике ЭДС и токи в большей или меньшей степени являются несинусоидальными. Это связано с тем, что реальные генераторы не обеспечивают, строго говоря, синусоидальной формы кривых напряжения, а с другой стороны, наличие нелинейных элементов в цепи обусловливает искажение формы токов даже при синусоидальных ЭДС источников.

На практике к несинусоидальности напряжений и токов следует подходить двояко:

  1.  в силовой электроэнергетике несинусоидальные токи обусловливают в общем случае дополнительные потери мощности, пульсации момента на валу двигателей, вызывают помехи в линиях связи; поэтому здесь необходимо «всеми силами» поддержание синусоидальных режимов;
  2.  в цепях автоматики и связи, где несинусоидальные токи и напряжения лежат в основе принципа действия электротехнических устройств, задача наоборот заключается в их усилении и передаче с наименьшими искажениями.

В общем случае характер изменения величин может быть периодическим, почти периодическим и непериодическим. В данном разделе будут рассматриваться цепи только с периодическими переменными.

Периодическими несинусоидальными величинами называются переменные, изменяющиеся во времени по периодическому несинусоидальному закону. Причины возникновения несинусоидальных напряжений и токов могут быть обусловлены или несинусоидальностью источника питания или (и) наличием в цепи хотя бы одного нелинейного элемента. Кроме того, в основе появления несинусоидальных токов могут лежать элементы с периодически изменяющимися параметрами.

В качестве примера на рис. 1,а представлена цепь с нелинейным резистором (НР), нелинейная вольт-амперная характеристика (ВАХ) которого обусловливает несинусоидальную форму тока i в цепи при синусоидальном напряжении u на ее входе (см. рис. 1,б).

Характеристики несинусоидальных величин

Для характеристики несинусоидальных периодических переменных служат следующие величины и коэффициенты (приведены на примере периодического тока):

  1.  Максимальное значение - .
  2.  Действующее значение - .
  3.  Среднее по модулю значение - .
  4.  Среднее за период значение (постоянная составляющая) - .
  5.  Коэффициент амплитуды (отношение максимального значения к действующему) - .
  6.  Коэффициент формы (отношение действующего значения к среднему по модулю) - .
  7.  Коэффициент искажений (отношение действующего значения первой гармоники к действующему значению переменной) - .
  8.  Коэффициент гармоник (отношение действующего значения высших гармонических к действующему значению первой гармоники) - .

 

Разложение периодических несинусоидальных
кривых в ряд Фурье

Из математики известно, что всякая периодическая функция , где Т – период, удовлетворяющая условиям Дирихле, может быть разложена в тригонометрический ряд. Можно отметить, что функции, рассматриваемые в электротехнике, этим условиям удовлетворяют, в связи с чем проверку на их выполнение проводить не нужно.

При разложении в ряд Фурье функция представляется следующим образом:

 

  .

(1)

Здесь  - постоянная составляющая или нулевая гармоника;  - первая (основная) гармоника, изменяющаяся с угловой частотой , где Т – период несинусоидальной периодической функции.

В выражении (1) , где коэффициенты  и  определяются по формулам

;

.

Свойства периодических кривых, обладающих симметрией

Коэффициенты ряда Фурье для стандартных функций могут быть взяты из справочной литературы или в общем случае рассчитаны по приведенным выше формулам. Однако в случае кривых, обладающих симметрией, задача существенно упрощается, поскольку из их разложения выпадают целые спектры гармоник. Знание свойств таких кривых позволяет существенно сэкономить время и ресурсы при вычислениях.

  1.  Кривые, симметричные относительно оси абсцисс.

К данному типу относятся кривые, удовлетворяющие равенству  (см. пример на рис. 2). В их разложении отсутствуют постоянная составляющая и четные гармоники, т.е. .

  1.  Кривые, симметричные относительно оси ординат.

К данному типу относятся кривые, для которых выполняется равенство  (см. пример на рис. 3). В их разложении отсутствуют синусные составляющие, т.е. .

  1.  Кривые, симметричные относительно начала координат.

К этому типу относятся кривые, удовлетворяющие равенству  (см. пример на рис. 4). При разложении таких кривых отсутствуют постоянная и косинусные составляющие, т.е. .

Действующее значение периодической несинусоидальной переменной

Как было показано выше, действующим называется среднеквадратичное за период значение величины:

.

При наличии аналитического выражения функции i(t) и возможности взятия интеграла от ее квадрата действующее значение i(t) определяется точно. Однако в общем случае на практике действующее значение переменной определяется на основе информации о  действующих значениях конечного ряда гармонических.

Пусть . Тогда

Очевидно, что каждый из интегралов от тригонометрических функций в последнем выражении равен нулю. Таким образом,

или

.

Аналогичные выражения имеют место для ЭДС, напряжения и т.д.

 

Мощность в цепях периодического несинусоидального тока

Пусть  и .

Тогда для активной мощности можно записать

.

Как было показано при выводе соотношения для действующего значения несинусоидальной переменной, среднее за период значение произведения синусоидальных функций различной частоты равно нулю. Следовательно,

,

где .

Таким образом, активная мощность несинусоидального тока равна сумме активных мощностей отдельных гармонических:

.

Аналогично для реактивной мощности можно записать

.

Полная мощность

,

где Т – мощность искажений, определяемая произведениями действующих значений разнопорядковых гармонических тока и напряжения.

Методика расчета линейных цепей при периодических несинусоидальных токах

Возможность разложения периодических несинусоидальных функций в ряд Фурье позволяет свести расчет линейной цепи при воздействии на нее несинусоидальных ЭДС (или токов) источников к расчету цепей с постоянными и синусоидальными токами в отдельности для каждой гармоники. Мгновенные значения искомых токов и напряжений определяются на основе принципа наложения путем суммирования найденных при расчете гармонических составляющих напряжений и токов. В соответствии с вышесказанным цепь на рис. 5 при воздействии на нее ЭДС

(при расчете спектр рассматриваемых гармоник ограничивается) в расчетном плане представляется суммой цепей на рис. 6.

Здесь .

Тогда, например, для тока в ветви с источником ЭДС, имеем

,

где каждая к-я гармоника тока рассчитывается символическим методом по своей к-й расчетной схеме. При этом (поверхностный эффект не учитывается) для всех гармоник параметры  и С постоянны.

;

.

Необходимо помнить, что ввиду различия частот суммировать комплексы различных гармоник недопустимо.

Таким образом, методика расчета линейных цепей при несинусоидальных токах сводится к следующему:

  1.  ЭДС и токи источников раскладываются в ряды Фурье.
  2.  Осуществляется расчет цепи в отдельности для каждой гармонической.
  3.  Искомые величины определяются как алгебраические суммы соответствующих гармонических.


 

А также другие работы, которые могут Вас заинтересовать

68626. Текстовый процессор Microsoft Word: создание и редактирование математических формул 246.17 KB
  Цель и содержание работы: изучить основные возможности редактора формул. Теоретическое обоснование Если нужно набрать в документе какую-нибудь формулу лучше всего воспользоваться редактором формул который состоит из различных шаблонов упрощающих ввод формул Рисунок 1.
68627. Текстовый процессор Microsoft Word: графика 264.05 KB
  Графическим объектом называют рисунок, который хранится на диске. Для создания простейших графических объектов выберите свободное место и нажмите кнопку вызова панели инструментов рисования (если ее нет в нижней части экрана). Графические объекты, создаваемые инструментами данной панели, имеют характер векторных объектов.
68628. Вычисления в электронных таблицах в MS Excel 91.02 KB
  Все функции несмотря на их разнообразие имеют одинаковый стандартный формат: имя функции и находящийся в круглых скобках перечень аргументов разделенных точками с запятой. Регистр при вводе функции не учитывается. Excel автоматически запишет имя функции прописными буквами.
68629. Построение диаграмм и графиков функций в MS Excel 65.58 KB
  Диаграммы графически представляют данные числового типа широко используются для анализа и сравнения данных представления их в наглядном виде позволяют показать соотношение различных значений или динамику изменения ряда данных. Числовым данным рабочего листа соответствуют элементы диаграммы...
68630. Системы счисления и кодирования; двоичная арифметика 481.18 KB
  Во всех этих числах встречается символ I единица. В этой последовательности десятичная точка запятая отделяет целую часть числа от дробной если число целое точка опускается. Крайний левый разряд числа называется старшим разрядом а крайний правый – младшим разрядом этого числа.
68631. Логические основы ЭВМ 28.37 KB
  Данное практическое занятие содержит информацию об основных понятиях математической логики: логических выражениях и операциях над ними правилах построении таблицы истинности для логического выражения о законах логики приводятся правила преобразования логических выражений.