40798

Линейные электрические цепи при несинусоидальных периодических токах

Лекция

Физика

Линейные электрические цепи при несинусоидальных периодических токах. Причины возникновения несинусоидальных напряжений и токов могут быть обусловлены или несинусоидальностью источника питания или и наличием в цепи хотя бы одного нелинейного элемента. Кроме того в основе появления несинусоидальных токов могут лежать элементы с периодически изменяющимися параметрами. Характеристики несинусоидальных величин Для характеристики несинусоидальных периодических переменных служат следующие величины и коэффициенты приведены на примере...

Русский

2013-10-22

64.74 KB

11 чел.

Лекция 18. Линейные электрические цепи при несинусоидальных периодических токах.

Предыдущие лекции были посвящены анализу электрических цепей при синусоидальных токах и напряжениях. На практике ЭДС и токи в большей или меньшей степени являются несинусоидальными. Это связано с тем, что реальные генераторы не обеспечивают, строго говоря, синусоидальной формы кривых напряжения, а с другой стороны, наличие нелинейных элементов в цепи обусловливает искажение формы токов даже при синусоидальных ЭДС источников.

На практике к несинусоидальности напряжений и токов следует подходить двояко:

  1.  в силовой электроэнергетике несинусоидальные токи обусловливают в общем случае дополнительные потери мощности, пульсации момента на валу двигателей, вызывают помехи в линиях связи; поэтому здесь необходимо «всеми силами» поддержание синусоидальных режимов;
  2.  в цепях автоматики и связи, где несинусоидальные токи и напряжения лежат в основе принципа действия электротехнических устройств, задача наоборот заключается в их усилении и передаче с наименьшими искажениями.

В общем случае характер изменения величин может быть периодическим, почти периодическим и непериодическим. В данном разделе будут рассматриваться цепи только с периодическими переменными.

Периодическими несинусоидальными величинами называются переменные, изменяющиеся во времени по периодическому несинусоидальному закону. Причины возникновения несинусоидальных напряжений и токов могут быть обусловлены или несинусоидальностью источника питания или (и) наличием в цепи хотя бы одного нелинейного элемента. Кроме того, в основе появления несинусоидальных токов могут лежать элементы с периодически изменяющимися параметрами.

В качестве примера на рис. 1,а представлена цепь с нелинейным резистором (НР), нелинейная вольт-амперная характеристика (ВАХ) которого обусловливает несинусоидальную форму тока i в цепи при синусоидальном напряжении u на ее входе (см. рис. 1,б).

Характеристики несинусоидальных величин

Для характеристики несинусоидальных периодических переменных служат следующие величины и коэффициенты (приведены на примере периодического тока):

  1.  Максимальное значение - .
  2.  Действующее значение - .
  3.  Среднее по модулю значение - .
  4.  Среднее за период значение (постоянная составляющая) - .
  5.  Коэффициент амплитуды (отношение максимального значения к действующему) - .
  6.  Коэффициент формы (отношение действующего значения к среднему по модулю) - .
  7.  Коэффициент искажений (отношение действующего значения первой гармоники к действующему значению переменной) - .
  8.  Коэффициент гармоник (отношение действующего значения высших гармонических к действующему значению первой гармоники) - .

 

Разложение периодических несинусоидальных
кривых в ряд Фурье

Из математики известно, что всякая периодическая функция , где Т – период, удовлетворяющая условиям Дирихле, может быть разложена в тригонометрический ряд. Можно отметить, что функции, рассматриваемые в электротехнике, этим условиям удовлетворяют, в связи с чем проверку на их выполнение проводить не нужно.

При разложении в ряд Фурье функция представляется следующим образом:

 

  .

(1)

Здесь  - постоянная составляющая или нулевая гармоника;  - первая (основная) гармоника, изменяющаяся с угловой частотой , где Т – период несинусоидальной периодической функции.

В выражении (1) , где коэффициенты  и  определяются по формулам

;

.

Свойства периодических кривых, обладающих симметрией

Коэффициенты ряда Фурье для стандартных функций могут быть взяты из справочной литературы или в общем случае рассчитаны по приведенным выше формулам. Однако в случае кривых, обладающих симметрией, задача существенно упрощается, поскольку из их разложения выпадают целые спектры гармоник. Знание свойств таких кривых позволяет существенно сэкономить время и ресурсы при вычислениях.

  1.  Кривые, симметричные относительно оси абсцисс.

К данному типу относятся кривые, удовлетворяющие равенству  (см. пример на рис. 2). В их разложении отсутствуют постоянная составляющая и четные гармоники, т.е. .

  1.  Кривые, симметричные относительно оси ординат.

К данному типу относятся кривые, для которых выполняется равенство  (см. пример на рис. 3). В их разложении отсутствуют синусные составляющие, т.е. .

  1.  Кривые, симметричные относительно начала координат.

К этому типу относятся кривые, удовлетворяющие равенству  (см. пример на рис. 4). При разложении таких кривых отсутствуют постоянная и косинусные составляющие, т.е. .

Действующее значение периодической несинусоидальной переменной

Как было показано выше, действующим называется среднеквадратичное за период значение величины:

.

При наличии аналитического выражения функции i(t) и возможности взятия интеграла от ее квадрата действующее значение i(t) определяется точно. Однако в общем случае на практике действующее значение переменной определяется на основе информации о  действующих значениях конечного ряда гармонических.

Пусть . Тогда

Очевидно, что каждый из интегралов от тригонометрических функций в последнем выражении равен нулю. Таким образом,

или

.

Аналогичные выражения имеют место для ЭДС, напряжения и т.д.

 

Мощность в цепях периодического несинусоидального тока

Пусть  и .

Тогда для активной мощности можно записать

.

Как было показано при выводе соотношения для действующего значения несинусоидальной переменной, среднее за период значение произведения синусоидальных функций различной частоты равно нулю. Следовательно,

,

где .

Таким образом, активная мощность несинусоидального тока равна сумме активных мощностей отдельных гармонических:

.

Аналогично для реактивной мощности можно записать

.

Полная мощность

,

где Т – мощность искажений, определяемая произведениями действующих значений разнопорядковых гармонических тока и напряжения.

Методика расчета линейных цепей при периодических несинусоидальных токах

Возможность разложения периодических несинусоидальных функций в ряд Фурье позволяет свести расчет линейной цепи при воздействии на нее несинусоидальных ЭДС (или токов) источников к расчету цепей с постоянными и синусоидальными токами в отдельности для каждой гармоники. Мгновенные значения искомых токов и напряжений определяются на основе принципа наложения путем суммирования найденных при расчете гармонических составляющих напряжений и токов. В соответствии с вышесказанным цепь на рис. 5 при воздействии на нее ЭДС

(при расчете спектр рассматриваемых гармоник ограничивается) в расчетном плане представляется суммой цепей на рис. 6.

Здесь .

Тогда, например, для тока в ветви с источником ЭДС, имеем

,

где каждая к-я гармоника тока рассчитывается символическим методом по своей к-й расчетной схеме. При этом (поверхностный эффект не учитывается) для всех гармоник параметры  и С постоянны.

;

.

Необходимо помнить, что ввиду различия частот суммировать комплексы различных гармоник недопустимо.

Таким образом, методика расчета линейных цепей при несинусоидальных токах сводится к следующему:

  1.  ЭДС и токи источников раскладываются в ряды Фурье.
  2.  Осуществляется расчет цепи в отдельности для каждой гармонической.
  3.  Искомые величины определяются как алгебраические суммы соответствующих гармонических.


 

А также другие работы, которые могут Вас заинтересовать

17185. ИННОВАЦИОННЫЙ МЕНЕДЖМЕНТ 384.82 KB
  ИННОВАЦИОННЫЙ МЕНЕДЖМЕНТ УЧЕБНИК под редакцией Действительного члена международной Академии информатизации доктора экономических наук профессора Ильенковой С. Д. Москва 1997 Инновационный менеджмент. Учебник / Под ред.
17186. Капитализм, социализм и демократия 968.59 KB
  Йозеф Шумпетер. Капитализм социализм и демократия Часть первая. МАРКСИСТСКАЯ ДОКТРИНА Пролог Глава I. Маркс пророк Глава II. Маркс социолог Глава III. Маркс экономист Глава IV. Маркс учитель Часть вторая. МОЖЕТ ЛИ КАПИТАЛИЗМ ВЫЖИТЬ П...
17187. Кожные и венерические болезни 600.43 KB
  Кожные и венерические болезни Иванов О.Л. Глава I ИСТОРИЯ ДЕРМАТОВЕНЕРОЛОГИИ Кожные и венерические болезни относятся к древнейшей патологии рода человеческого и сопутствуют всем этапам его развития приобретая иногда характер своеобразных эпидемий. Первые ...
17188. ТРИАДОЛОГИЯ Л.П.КАРСАВИНА НА МАТЕРИАЛЕ ТРАКТАТА «О ЛИЧНОСТИ» 58.08 KB
  К.А. Махлак ТРИАДОЛОГИЯ Л.П.КАРСАВИНА НА МАТЕРИАЛЕ ТРАКТАТА О ЛИЧНОСТИ Говоря о триадологии мы в нашем контексте с самого начала должны различать два момента.. Прежде всего есть триадология как отдел святоотеческого богословия триадология учение о Православной...
17189. КРИТИКА ТЕОРИИ ЛИЧНОСТИ КАК СУБЪЕКТА ИСТОРИИ В ИСТОРИОСОФИИ Л.П. КАРСАВИНА 143.53 KB
  Т.А. Туровцев КРИТИКА ТЕОРИИ ЛИЧНОСТИ КАК СУБЪЕКТА ИСТОРИИ В ИСТОРИОСОФИИ Л.П. КАРСАВИНА Представляется что одной из существенных методологических ошибок русской религиознофилософской мысли оказывается неразличение понятий. Это может касаться как исходно заяв
17190. ЛАТИНСКИЕ ТРАКТАТЫ 179.09 KB
  Майстер Экхарт ЛАТИНСКИЕ ТРАКТАТЫ Перевод В.В. Можаровского фрагментов из 3 х трактатов Вступление Здесь представлен перевод наиболее важных в догматическом отношении фрагментов из Латинских трактатов Майстера Экхарта. Тексты размещены по трем основным раз
17191. ЗАПАДНОЕВРОПЕЙСКАЯ МЫСЛЬ И РУССКАЯ ФИЛОСОФИЯ 249.45 KB
  П.А. Сапронов ЗАПАДНОЕВРОПЕЙСКАЯ МЫСЛЬ И РУССКАЯ ФИЛОСОФИЯ Ввиду промежуточности недовершенности и неопределенности феномена русской религиознофилософской мысли ее отношение к западной философии никогда не было отношением части и целого. В еще меньшей степени б
17192. Отношение к философии и богословию в святоотеческой традиции 42.51 KB
  Отношение к философии и богословию в святоотеческой традиции. Вопрос об отношении между философией и богословием между верой и разумом достаточно старый и решался он в зависимости от культурной и исторической ситуации поразному. Для нас важно что в полемике по этом
17193. ДОМАШНИЙ ДОКТОР ДЛЯ ДЕТЕЙ 2.06 MB
  Клафлин Эдвард под ред. ДОМАШНИЙ ДОКТОР ДЛЯ ДЕТЕЙ Советы американских врачей пер. Почиталин И. Г. Изд. КронПресс Москва 1997 г. OCR Палек Alligator 1998 г. Вступление Как помочь здоровью вашего ребенка Если у вас есть дети вы наверное захотите чтобы под рукой ...