40799

Переходные процессы в линейных электрических цепях с сосредоточенными параметрами

Лекция

Физика

Для цепей с заданными постоянными или периодическими напряжениями токами источников принужденная составляющая определяется путем расчета стационарного режима работы схемы после коммутации любым из рассмотренных ранее методов расчета линейных электрических цепей. общее решение уравнения 2 имеет вид 4 Соотношение 4 показывает что при классическом методе расчета послекоммутационный процесс рассматривается как наложение друг на друга двух режимов принужденного наступающего как бы сразу после коммутации и свободного имеющего...

Русский

2013-10-22

66.4 KB

4 чел.

Лекция 19. Переходные процессы в линейных электрических цепях с сосредоточенными параметрами.

При всех изменениях в электрической цепи: включении, выключении, коротком замыкании, колебаниях величины какого-либо параметра и т.п. – в ней возникают переходные процессы, которые не могут протекать мгновенно, так как невозможно мгновенное изменение энергии, запасенной в электромагнитном поле цепи. Таким образом, переходный процесс обусловлен несоответствием величины запасенной энергии в магнитном поле катушки и электрическом поле конденсатора ее значению для нового состояния цепи.

При переходных процессах могут возникать большие перенапряжения, сверхтоки, электромагнитные колебания, которые могут нарушить работу устройства вплоть до выхода его из строя. С другой стороны, переходные процессы находят полезное практическое применение, например, в различного рода электронных генераторах. Все это обусловливает необходимость изучения методов анализа нестационарных режимов работы цепи.

Основные методы анализа переходных процессов в линейных цепях:

  1.  Классический метод, заключающийся в непосредственном интегрировании дифференциальных уравнений, описывающих электромагнитное состояние цепи.
  2.  Операторный метод, заключающийся в решении системы алгебраических уравнений относительно изображений искомых переменных с последующим переходом от найденных изображений к оригиналам.
  3.  Частотный метод, основанный на преобразовании Фурье и находящий широкое применение при решении задач синтеза.
  4.  Метод расчета с помощью интеграла Дюамеля, используемый при сложной форме кривой возмущающего воздействия.
  5.  Метод переменных состояния, представляющий собой упорядоченный способ определения электромагнитного состояния цепи на основе решения системы дифференциальных уравнений первого прядка, записанных в нормальной форме (форме Коши).

Классический метод расчета

Классический метод расчета переходных процессов заключается в непосредственном интегрировании дифференциальных уравнений, описывающих изменения токов и напряжений на участках цепи в переходном процессе.

В общем случае при использовании классического метода расчета составляются уравнения электромагнитного состояния цепи по законам Ома и Кирхгофа для мгновенных значений напряжений и токов, связанных между собой на отдельных  элементах цепи соотношениями, приведенными в табл. 1.

 Таблица 1. Связь мгновенных значений напряжений и токов на элементах                    электрической цепи

     Резистор (идеальное активное сопротивление)

  Катушка индуктивности (идеальная индуктивность)

          Конденсатор

    (идеальная емкость)

             

          ;

при наличии магнитной связи с катушкой, обтекаемой током ,

   

         ;

         

Для последовательной цепи, содержащей линейные резистор R, катушку индуктивности L и конденсатор С, при ее подключении к источнику с напряжением u (см. рис. 1) можно записать


.   

(1)

Подставив в (1) значение тока через конденсатор

,

получим линейное дифференциальное уравнение второго порядка относительно

.

В общем случае уравнение, описывающее переходный процесс в цепи с n независимыми накопителями энергии, имеет вид:

,   

(2)

где х – искомая функция времени (напряжение, ток, потокосцепление и т.п.);  - известное возмущающее воздействие (напряжение и (или) ток источника электрической энергии);  - к-й постоянный коэффициент, определяемый параметрами цепи.

Порядок данного уравнения равен числу независимых накопителей энергии в цепи, под которыми понимаются катушки индуктивности и конденсаторы в упрощенной схеме, получаемой из исходной путем объединения индуктивностей и соответственно емкостей элементов, соединения между которыми являются последовательными или параллельными.

В общем случае порядок дифференциального уравнения определяется соотношением

,

(3)

где  и  - соответственно число катушек индуктивности и конденсаторов после указанного упрощения исходной схемы;  - число узлов, в которых сходятся только ветви, содержащие катушки индуктивности (в соответствии с первым законом Кирхгофа ток через любую катушку индуктивности в этом случае определяется токами через остальные катушки);  - число контуров схемы, ветви которых содержат только конденсаторы (в соответствии со вторым законом Кирхгофа напряжение на любом из конденсаторов в этом случае определяется напряжениями на других).

Наличие индуктивных связей на порядок дифференциального уравнения не влияет.

Как известно из математики, общее решение уравнения (2) представляет собой сумму частного решения исходного неоднородного уравнения и общего решения однородного уравнения, получаемого из исходного путем приравнивания его левой части к нулю. Поскольку с математической стороны не накладывается каких-либо ограничений на выбор частного решения (2), применительно к электротехнике в качестве последнего удобно принять решение , соответствующее искомой переменной х в установившемся послекоммутационном режиме (теоретически для ).

Частное решение  уравнения (2) определяется видом функции , стоящей в его правой части, и поэтому называется принужденной составляющей. Для цепей с заданными постоянными или периодическими напряжениями (токами) источников принужденная составляющая определяется путем расчета стационарного режима работы схемы после коммутации любым из рассмотренных ранее методов расчета линейных электрических цепей.

Вторая составляющая  общего решения х уравнения (2) – решение (2) с нулевой правой частью – соответствует режиму, когда внешние (принуждающие) силы (источники энергии) на цепь непосредственно не воздействуют. Влияние источников проявляется здесь апосредованно через энергию, запасенную в полях катушек индуктивности и конденсаторов. Данный режим работы схемы называется свободным, а переменная  - свободной составляющей.

В соответствии с вышесказанным, .        общее решение уравнения (2) имеет вид

(4)

Соотношение (4) показывает, что при классическом методе расчета послекоммутационный процесс рассматривается как наложение друг на друга двух режимов – принужденного, наступающего как бы сразу после коммутации, и свободного, имеющего место только в течение переходного процесса.

Необходимо подчеркнуть, что, поскольку принцип наложения справедлив только для линейных систем, метод решения, основанный на указанном разложении искомой переменной х, справедлив только для линейных цепей.

Начальные условия. Законы коммутации

В соответствии с определением свободной составляющей  в ее выражении имеют место постоянные интегрирования , число которых равно порядку дифференциального уравнения. Постоянные интегрирования находятся из начальных условий, которые принято делить на независимые и зависимые. К независимым начальным условиям относятся потокосцепление (ток) для катушки индуктивности и заряд (напряжение) на конденсаторе в момент времени  (момент коммутации). Независимые начальные условия определяются на основании законов коммутации (см. табл. 2).

 

Таблица 2. Законы коммутации

Название закона

Формулировка закона

Первый закон коммутации (закон сохранения потокосцепления)

Магнитный поток, сцепленный с катушками индуктивности контура, в момент коммутации сохраняет то значение, которое имел до коммутации, и начинает изменяться именно с этого значения: .

Второй закон коммутации (закон сохранения заряда)

Электрический заряд на конденсаторах, присоединенных к любому узлу, в момент коммутации сохраняет то значение, которое имел до коммутации, и начинает изменяться именно с этого значения: .

Доказать законы коммутации можно от противного: если допустить обратное, то получаются бесконечно большие значения  и , что приводит к нарушению законов Кирхгофа.

На практике, за исключением особых случаев (некорректные коммутации), допустимо использование указанных законов в другой формулировке, а именно:

первый закон коммутации –          в     ветви   с    катушкой    индуктивности   ток  в момент

коммутации сохраняет свое докоммутационное значение и в дальнейшем начинает изменяться с него: .

второй закон коммутации  –          напряжение          на         конденсаторе        в         момент

коммутации сохраняет свое докоммутационное значение и в дальнейшем начинает изменяться с него: .

Необходимо подчеркнуть, что более общей формулировкой законов коммутации является положение о невозможности скачкообразного изменения в момент коммутации для схем с катушкой индуктивности – потокосцеплений, а для схем с конденсаторами – зарядов на них. В качестве иллюстрации сказанному могут служить схемы на рис. 2, переходные процессы в которых относятся к так называемым некорректным коммутациям (название произошло от пренебрежения в подобных схемах малыми параметрами, корректный учет которых может привести к существенному усложнению задачи).

 

Действительно, при переводе в схеме на рис. 2,а ключа из положения 1 в положение 2 трактование второго закона  коммутации  как невозможность  скачкообразного изменения напряжения на конденсаторе  приводит к невыполнению второго закона Кирхгофа . Аналогично при размыкании ключа в схеме на рис. 2,б трактование первого закона коммутации как невозможность скачкообразного изменения тока через катушку индуктивности приводит к невыполнению первого закона Кирхгофа . Для данных схем, исходя из сохранения заряда и соответственно потокосцепления, можно записать:

Зависимыми начальными условиями называются значения остальных токов и напряжений, а также производных от искомой функции в момент коммутации, определяемые по независимым начальным условиям при помощи уравнений, составляемых по законам Кирхгофа для . Необходимое число начальных условий равно числу постоянных интегрирования. Поскольку уравнение вида (2) рационально записывать для переменной, начальное значение которой относится к независимым начальным условиям, задача нахождения начальных условий обычно сводится к нахождению значений этой переменной и ее производных до (n-1) порядка включительно при .

Пример. Определить токи и производные  и  в момент коммутации в схеме на рис. 3, если до коммутации конденсатор был не заряжен.

В соответствии с законами коммутации

    и     .

На основании второго закона Кирхгофа для момента коммутации имеет место

,

откуда

и .

Для известных значений  и  из уравнения

определяется .

Значение производной от напряжения на конденсаторе в момент коммутации (см. табл. 1)

.

Корни характеристического уравнения. Постоянная времени

Выражение свободной составляющей  общего решения х дифференциального уравнения (2) определяется видом корней характеристического уравнения (см. табл. 3).

 Таблица 3. Выражения свободных составляющих общего решения

Вид корней характеристического уравнения

   Выражение свободной составляющей

Корни  вещественные и различные

                  

Корни  вещественные и

      

Пары комплексно-сопряженных корней

Необходимо помнить, что, поскольку в линейной цепи с течением времени свободная составляющая затухает, вещественные части корней характеристического уравнения не могут быть положительными.

При вещественных корнях  монотонно затухает, и имеет место апериодический переходный процесс. Наличие пары комплексно сопряженных корней обусловливает появление затухающих синусоидальных колебаний (колебательный переходный процесс).

Поскольку физически колебательный процесс связан с периодическим обменом энергией между магнитным полем катушки индуктивности и электрическим полем конденсатора, комплексно-сопряженные корни могут иметь место только для цепей, содержащих оба типа накопителей. Быстроту затухания колебаний принято характеризовать отношением

,

которое называется декрементом колебания, или натуральным логарифмом этого отношения

,

называемым логарифмическим декрементом колебания, где .

Важной характеристикой при исследовании переходных процессов является постоянная времени t, определяемая для цепей первого порядка, как:

,

где р – корень характеристического уравнения.

Постоянную времени можно интерпретировать как временной интервал, в течение которого свободная составляющая уменьшится в е раз по сравнению со своим начальным значением. Теоретически переходный процесс длится бесконечно долго. Однако на практике считается, что он заканчивается при


 

А также другие работы, которые могут Вас заинтересовать

65171. Золотоордынские ярлыки Русской Церкви как пример правоотношений светской и духовной власти на государственном и надгосударственном уровне 50 KB
  Ярлыки русской церкви представляют собой в общемто весьма распространенный тип ярлыков выдававшихся и в Монгольской империи и в ее отдельных улусах. Надо полагать что выдача ярлыков русской церкви осуществлялась всеми золотоордынскими ханами начиная с самых первых за исключением...
65172. К вопросу о судебной реформе крымского хана Мурад-Гирея (по сведениям «Семи планет» Сейида Мухаммеда Ризы) 29 KB
  Дальнейшая политика Мурад Гирея свидетельствовала о его лояльности: он постоянно являлся в Стамбул активно участвовал в войнах империи. На наш взгляд действия Мурад Гирея являлись популистской акцией попыткой укрепления собственного имиджа в глазах подданных.
65173. ОБРАЗ МАМАЯ В РУССКОМ ЛЕТОПИСАНИИ КАК СРЕДСТВО ДЕЛЕГИТИМИЗАЦИИ ВЛАСТИ ОРДЫНСКОГО ХАНА 132 KB
  В отечественной историографии правитель Золотой Орды Мамай удостоился самых отрицательных отзывов какими только характеризовались враги России. Эти характеристики могут быть отнесены к проводимой им в отношении Руси политики но некоторые источники...
65174. ОБЫЧАЙ И ЗАКОН В ПРАВЕ КОЧЕВНИКОВ ЦЕНТРАЛЬНОЙ АЗИИ (ПОСЛЕ ИМПЕРИИ ЧИНГИС-ХАНА) 78 KB
  Другие же ногайские орды казахские узбекские монгольские сибирские ханства по мнению исследователей сделали в своем развитии шаг назад и из государств трансформировались в вождества; соответственно развитая система писанного права существовавшая...
65175. Математик, которого я знаю – Ньютон Исаак 235 KB
  Исаак Ньютон появился на свет в небольшой деревушке в семье мелкого фермера, умершего за три месяца до рождения сына. Младенец был недоношенным, бытует легенда, что он был так мал, что его поместили в овчинную рукавицу, лежавшую на лавке, из которой он однажды выпал и сильно ударился головкой об пол.
65176. Математик, которого я знаю – Франсуа Виет 77.7 KB
  Франсуа Виет 1540-1603 Родился в 1540 году на юге Франции в небольшом городке Фантенеле Конт французской провинции Пуату Шарант в 60 км от Ла Рошели. Его отец Этьен Виет прокурор. Благодаря связям матери Маргариты Дюпон и браку своей ученицы с принцем...
65178. Математик, которого я знаю – Фалес Милетский 214.65 KB
  Фалес Милетский жил в самом конце 7 первой половине 6 в до н. Фалес Милетский был уроженцем греческого торгового города Милета расположенного в Малой Азии на берегу Эгейского моря.
65179. Математик, которого я знаю – Карл Гаусс 54 KB
  Сам того не подозревая Гаусс переоткрыл формулу для определения суммы членов арифметической прогрессии. Талант юного математика не остался без внимания герцога Брауншвейгского и в 1788 при его поддержке Гаусс поступил в закрытую школу Коллегиум...