40805

Частотный (спектральный) метод анализа электрических цепей

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Поскольку частотные характеристики являются характеристиками установившегося режима гармонических колебаний то целесообразно произвольное воздействие представить в виде совокупности гармонических и реакцию линейной цепи искать как совокупность реакций вызванных каждым гармоническим воздействием в отдельности. Таким образом частотный метод анализа включает в себя задачу частотного или спектрального представления воздействия в виде суммы гармонических составляющих с определенными амплитудами начальными фазами и частотами а также задачу...

Русский

2013-10-22

67.46 KB

39 чел.

Лекция 26. Частотный (спектральный) метод анализа электрических цепей

При частотном методе анализа электрическая цепь задается своими частотными характеристиками (АЧХ и ФЧХ), которые в большинстве практических случаев могут быть просто измерены или рассчитаны. При этом необходимо определить реакцию на произвольное (негармоническое) воздействие. Поскольку частотные характеристики являются характеристиками установившегося режима гармонических колебаний, то целесообразно произвольное воздействие представить в виде совокупности гармонических и реакцию линейной цепи искать как совокупность реакций, вызванных каждым гармоническим воздействием в отдельности. Таким образом, частотный метод анализа включает в себя задачу частотного или спектрального представления воздействия в виде суммы гармонических составляющих с определенными амплитудами, начальными фазами и частотами, а также задачу определения реакций цепи на каждую гармоническую составляющую воздействия и их суммирование.

Сформулированные задачи наиболее просто решаются для периодических негармонических воздействий, которые при некоторых ограничениях могут быть представлены в виде гармонического ряда Фурье.

Анализ спектрального состава периодических сигналов

Пусть периодическая функция f(t) имеет период повторения, равный Т так, что f(t+T)=f(t). В качестве примера на рис.4.1 приведен график периодической последовательности видеоимпульсов прямоугольной формы.

Предположим, что периодическая функция удовлетворяет условиям Дирихле:

1) на интервале Т функция должна быть непрерывной или иметь конечное число разрывов только первого рода;

2) число экстремумов функции f(t) на интервале Т должно быть конечно и она не должна обращаться в бесконечность.

Следует отметить, что все периодические функции, с которыми имеют дело в теории цепей, удовлетворяют условиям Дирихле.

При принятых предположениях функция f(t) может быть представлена рядом Фурье:

, (4.1)

где ω1=2π/Т – частота основной (первой) гармоники, которая определяется периодом (частотой) повторения исходной функции f(t); Ак, φк и к·ω1 – амплитуда, начальная фаза и частота к-ой гармоники; Ао /2 – постоянная составляющая, которую можно рассматривать как гармоническую составляющую с нулевой частотой, т.е. при к=0.

Коэффициенты разложения (4.1) определяются известным из математики соотношением:

, (4.2)

Таким образом, периодический сигнал может быть представлен как результат наложения бесконечно большого числа гармонических колебаний. Хотя, теоретически ряд (4.1) бесконечен, для реальных сигналов он быстро сходится, так, что Ак → 0 при увеличении к. Периодическое колебание полностью описывается совокупностью амплитуд Ак и фаз φк в разложении (4.1). Первая совокупность называется спектром амплитуд, вторая – спектром фаз. Периодические сигналы имеют дискретный (линейчатый) спектр, так как частоты к·ω1 составляющих спектра принимают дискретные значения, кратные основной частоте ω1.

Анализ режима периодических негармонических колебаний в в электрических цепях

Как было отмечено ранее, в основе анализа лежит принцип наложения. Предположим, что на вход цепи (рис.4.2) подается периодическое воздействие, которое можно представить в виде ряда Фурье:

, (4.3)

Рис. 4.2. Четырехполюсник

Электрическая цепь задается своими частотными характеристиками, а именно: АЧХ - |H(jw)| и ФЧХ - Q (w). Требуется определить реакцию u2 (t).

Предположим, что воздействие к цепи было приложено задолго до момента наблюдения так, что к моменту наблюдения каждая из составляющих реакции, обусловленная соответствующей гармонической составляющей воздействия, будет гармоническим колебанием. Таким образом, будем искать установившуюся периодическую реакцию.

Выделим из (4.3) отдельную гармоническую составляющую

Umk cos(kw 1t+j k).

Реакция на эту составляющую может быть найдена с помощью АЧХ и ФЧХ.

Причем, амплитуда реакции равна амплитуде U воздействия, умноженной на значение |Н(jкω1)| АЧХ цепи при частоте кω1 воздействующей гармоники, а начальная фаза реакции сумме начальной фазы воздействия φк и значения q (кω1) ФЧХ цепи на частоте воздействующей гармоники. Таким образом, реакция на выделенную составляющую запишется в виде:

Umk|H(jkw1)| cos [kw1t+j k+q (kw1)].

Аналогично находят реакцию на постоянную составляющую воздействия.

Согласно принципу наложения полная реакция

u2(t)=U0|H(j0)| +Umk|H(jkw 1)| cos [kw 1t+j k+q (kw 1)] , (4.4)

При практических расчетах, как было отмечено, имеют дело с конечным числом членов ряда Фурье.

Пример. Для цепи рис.4.3 определить установившуюся реакцию на воздействие

u1(t)=.

Параметры цепи: R=100 Ом ; L=10 –4 Гн

рис.4.3

Комплексная функция передачи, АЧХ и ФЧХ для данной цепи имеют вид:

, (4.5)

 

Согласно (4.5) реакция на заданное воздействие:

По формулам (4.5) при заданных параметрах определяем:

|Н(0)| = 0; |Н(j106)| = 0,707; |Н(j2·106)| = 0,894; θ(106) = 45о; θ(2·106) = 27о

и искомую реакцию:

Анализ спектрального состава непериодического сигнала

Непериодический сигнал f(t), например единичный прямоугольный импульс, (рис. 6)

можно представить как периодический с периодом Т ∞. При этом амплитуды гармонических составляющих, согласно (4.2), будут стремиться к нулю, т.е. станут бесконечно малыми величинами. Кроме того, расстояние между спектральными составляющими, которое определяется основной частотой ω1=2π/Т также становится бесконечно малой величиной и спектр из дискретного преобразуется в сплошной.

Таким образом, непериодическое колебание можно рассматривать как сумму бесконечного числа бесконечно малых по амплитуде гармонических колебаний, частоты которых отличаются на бесконечно малые величины и заполняют весь частотный диапазон. Ряд Фурье преобразуется в известный из математики интеграл Фурье:

(4.6)

где

(4.7)

Предполагается, что функция f(t) во всяком конечном промежутке удовлетворяет условиям Дирихле, абсолютно интегрируема в бесконечных пределах и f(t)=0 при t<0. Для нас важно, что (4.6) представляет из себя интегральную сумму бесконечно большого числа гармонических колебаний с бесконечно малыми амплитудами |F()|/π, νачальными фазами φ(ω) и частотами ω, непрерывно изменяющимися от ω=0 до ω→ ∞.

Функция |F()| называется спектральной плотностью амплитуд, т.к. амплитуда составляющих для каждого бесконечно малого диапазона частот от ω до ω+ пропорциональна значению этой функции. Функция φ(ω) характеризует спектр фаз непериодического сигнала. Комплексную функцию F(jω) называют комплексной спектральной плотностью, а соотношение (4.7)-односторонним преобразованием Фурье.

Нетрудно увидеть аналогию и связь преобразований Лапласа и Фурье. Одностороннее преобразование Фурье F(jω) может быть получено из преобразования Лапласа F(p) при p = ,т.е.

F(jω)=F(p) |p=jω , (4.8)

Соотношение (4.10) может быть использовано для анализа спектрального состава различных сигналов с использованием обширных таблиц преобразований Лапласа.

Пример 1. Определить спектральную плотность амплитуд и спектр фаз экспоненциальной функции f(t) =A oe-αt.

Воспользуемся известным преобразованием Лапласа от данной функции и соотношением (4.8). Тогда комплексная спектральная плотность

.

Откуда спектральная плотность амплитуд |F(jω)|=A o/(a 2+ω2)1/2 и спектр фаз φ(w )= - arctg(ω/a ).

Графики этих функций представлены на рис.4.7. Спектр экспоненциального сигнала сосредоточен в области нижних частот.

Пример 2. Определить спектральную плотность амплитуд и спектр фаз единичной импульсной функции f(t)=δ(t). Согласно табл.3.1 F(p)=1.

Следовательно, F(jω)=1; |F(jω)|=1; φ(ω)=0. Спектр единичного импульса равномерно распределен по всей частотной оси от ω=0 до ω=∞.

Рис. 4.8.

4.7. Спектральный метод анализа электрических цепей

Пусть на входе некоторой линейной системы действует входной сигнал u1(t), заданный в виде интеграла Фурье:

(4.9)

Линейная система задана своими частотными характеристиками, а именно: АЧХ - |H(jω)| и ФЧХ - θ(ω). Имея в виду, что (4.12) является интегральной суммой гармонических составляющих, и применяя принцип суперпозиции, можно вычислить реакцию u2(t) на выходе системы с помощью частотных характеристик аналогично тому, как это было сделано для периодического воздействия в разделе 4.3. Тогда получим:

, (4.10)

Полученное соотношение (4.10) является интегралом Фурье для выходного сигнала. Причем, спектральные характеристики выходного сигнала

|U2(jw )| = |U1(jw )| × |H(jw )| , j 2(w ) = j 1(w ) +q (w , (4.11)

Очевидно, что формулы (4.11) можно объединить в одну

U2(jw ) = U1(jw ) × H(jw ) , (4.12)

где U1(jω)=|U1exp(jj 1), U2(jω)=|U2exp(jj 2)– комплексные спектральные плотности воздействия и реакции; H(jω)=|Hexp(jq )– комплексная функция передачи системы.

Таким образом, при спектральном анализе, эффект преобразования сигнала в системе отображается простой алгебраической операцией умножения. Зная АЧХ и ФЧХ цепи, можно найти спектральные характеристики и саму реакцию на любое воздействие, которое может быть представлено интегралом Фурье. Спектральный метод анализа особенно удобен, если система имеет простые (идеализированные) частотные характеристики.

4.8. Условия неискаженной передачи сигналов через электрическую цепь

Для того чтобы при передаче сигнала через электрическую цепь отсутствовали искажения формы сигнала (т.е. функции воздействия и реакции были идентичны), необходимо, чтобы цепь имела частотные характеристики следующего вида:

|H(jω)| = Ko; θ(ω)= - ωto , (4.13)

где Ко и tо – некоторые положительные константы.

Графики частотных характеристик такой неискажающей цепи приведены на рис. 4.11.

Рис. 4.11.

 

Для доказательства приведенного утверждения предположим, что на входе такой неискажающей цепи действует некоторое напряжение u1(t),

представленное интегралом Фурье (4.9).

Тогда, согласно спектральному методу, напряжение на выходе u2(t) определится по (4.10). Подставим в (4.10) указанные АЧХ и ФЧХ (4.13) неискажающей цепи. Тогда получим:

, (4.14)

Сравнивая полученное выражение (4.14) для выходного напряжения с выражением (4.9) для входного напряжения, можно записать:

u2 (t) = Ko u1(t – to) ,(4.15)

Таким образом, при передаче сигнала через рассматриваемую цепь происходит пропорциональное изменение значений сигнала в Ко раз и его задержка на некоторое время to. При этом сигналы на входе и выходе цепи как функции времени идентичны, т.е. не происходит изменение формы сигнала.


 

А также другие работы, которые могут Вас заинтересовать

44108. ИСПОЛЬЗОВАНИЕ КОУЧИНГА В ЦЕЛЯХ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ДЕЯТЕЛЬНОСТИ ТОРГОВОГО ПРЕДПРИЯТИЯ 805 KB
  Концепцию и перспективные ориентиры развития человеческих ресурсов «3 М» разрабатывает отдел стратегического планирования при исполнительном директоре по стратегическим службам человеческих ресурсов. На этой основе готовится комплексный доклад по организационному анализу, который обобщает и систематизирует цели и задачи корпорации в сфере труда в рамках долговременных глобальных тенденций.
44109. Электроснабжение района города на 56 тыс. жителей 1.21 MB
  Проверяем выбранное сечение по допустимой нагрузке для условий нормального режима. Проверяем сечение по допустимой нагрузке для условий после аварийного режима: где 13 – коэффициент учитывающий перегрузку на 30. Расчетная токовая нагрузка линий в после аварийном режиме: Сечение данного кабеля недостаточно так как условие не выполняется поэтому увеличиваем до...
44110. Контрольная работа по диалектологии 42 KB
  Фонема [ф] не исконно русская, встречается в иноязычных словах, т.е. говоры, где влияние литературного языка было несильным, усвоение фонемы в соответствии с правилами употребления не произошло. Но возникла необходимость заменить «незнакомый» звук в словах, поэтому появилось артикулярно-близкое сочетание [хв]. В предложенных словах эти звук и сочетание звуков спутаны, следовательно, учащимися не приобретён навык различия слов с [ф] и [хв].
44111. ГОРИЗОНТАЛЬНАЯ СЪЕМКА ЗЕМЕЛЬ 1.53 MB
  В работах связанных с землеустройством применяют топографические съемки местности. Топографическая съемка местности – это совокупность топографо-геедезических работ в результате которых создается съемочный оригинал карты или плана местности. Если надо заснять небольшие участки местности то из-за высокой стоимости летно-съемочных работ аэрофотосъемка становится экономически невыгодным поэтому в таких случаях применяют мензульную съемку. Теодолитную съемку применяют главным образом при съемке местности с капитальной...
44112. Разработка экономического программного обеспечения для ОАО «Автосила» 803.5 KB
  Порядок формирования прибыли. Схема формирования валовой балансовой прибыли. Формирование и распределение чистой прибыли. Схема распределения чистой прибыли.
44113. Разработка графического интерфейса DVM-системы 916 KB
  Параллельная программа на исходном языке Фортран-DVM (или Си-DVM) превращается в программу на языке Фортран 77 (или Си), содержащую вызовы функций системы поддержки, и выполняющуюся в соответствии с моделью SPMD (одна программа – много данных) на каждом выделенном задаче процессоре
44114. Подготовка печатной машины Speedmaster SM 102 к печатанию тиража и получение контрольного оттиска 1.3 MB
  Установка и приладка валиков.Подготовка валиков увлажняющего аппарата Сразу по возвращению в Германию Каспар Херманн смог получить патент на офсетную машину работа которой была основана на принципе использования резиновых валиков что позволяло печатать с лицевой и оборотной стороны листа. Красочный аппарат состоит из красочного ящика кипсейки дукторного вала системы обрезиненных валиков и металлических цилиндров различного диаметра накатных валиков но может содержать дополнительно валикинаездники и мостовой валик.
44116. Совершенствование инвестиционной деятельности полиграфического предприятия по повышению качества печатной продукции и ее экономическая оценка на примере ООО «Пронто-Калининград» 2.37 MB
  ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ИНВЕСТИЦИОННОЙ деятельности предприятия. Сущность и понятия инвестиционной деятельности предприятия. Особенности инвестиционной деятельности предприятия в современных условиях. Методы оценки и показатели совершенствования инвестиционной деятельности предприятия.