40805

Частотный (спектральный) метод анализа электрических цепей

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Поскольку частотные характеристики являются характеристиками установившегося режима гармонических колебаний то целесообразно произвольное воздействие представить в виде совокупности гармонических и реакцию линейной цепи искать как совокупность реакций вызванных каждым гармоническим воздействием в отдельности. Таким образом частотный метод анализа включает в себя задачу частотного или спектрального представления воздействия в виде суммы гармонических составляющих с определенными амплитудами начальными фазами и частотами а также задачу...

Русский

2013-10-22

67.46 KB

55 чел.

Лекция 26. Частотный (спектральный) метод анализа электрических цепей

При частотном методе анализа электрическая цепь задается своими частотными характеристиками (АЧХ и ФЧХ), которые в большинстве практических случаев могут быть просто измерены или рассчитаны. При этом необходимо определить реакцию на произвольное (негармоническое) воздействие. Поскольку частотные характеристики являются характеристиками установившегося режима гармонических колебаний, то целесообразно произвольное воздействие представить в виде совокупности гармонических и реакцию линейной цепи искать как совокупность реакций, вызванных каждым гармоническим воздействием в отдельности. Таким образом, частотный метод анализа включает в себя задачу частотного или спектрального представления воздействия в виде суммы гармонических составляющих с определенными амплитудами, начальными фазами и частотами, а также задачу определения реакций цепи на каждую гармоническую составляющую воздействия и их суммирование.

Сформулированные задачи наиболее просто решаются для периодических негармонических воздействий, которые при некоторых ограничениях могут быть представлены в виде гармонического ряда Фурье.

Анализ спектрального состава периодических сигналов

Пусть периодическая функция f(t) имеет период повторения, равный Т так, что f(t+T)=f(t). В качестве примера на рис.4.1 приведен график периодической последовательности видеоимпульсов прямоугольной формы.

Предположим, что периодическая функция удовлетворяет условиям Дирихле:

1) на интервале Т функция должна быть непрерывной или иметь конечное число разрывов только первого рода;

2) число экстремумов функции f(t) на интервале Т должно быть конечно и она не должна обращаться в бесконечность.

Следует отметить, что все периодические функции, с которыми имеют дело в теории цепей, удовлетворяют условиям Дирихле.

При принятых предположениях функция f(t) может быть представлена рядом Фурье:

, (4.1)

где ω1=2π/Т – частота основной (первой) гармоники, которая определяется периодом (частотой) повторения исходной функции f(t); Ак, φк и к·ω1 – амплитуда, начальная фаза и частота к-ой гармоники; Ао /2 – постоянная составляющая, которую можно рассматривать как гармоническую составляющую с нулевой частотой, т.е. при к=0.

Коэффициенты разложения (4.1) определяются известным из математики соотношением:

, (4.2)

Таким образом, периодический сигнал может быть представлен как результат наложения бесконечно большого числа гармонических колебаний. Хотя, теоретически ряд (4.1) бесконечен, для реальных сигналов он быстро сходится, так, что Ак → 0 при увеличении к. Периодическое колебание полностью описывается совокупностью амплитуд Ак и фаз φк в разложении (4.1). Первая совокупность называется спектром амплитуд, вторая – спектром фаз. Периодические сигналы имеют дискретный (линейчатый) спектр, так как частоты к·ω1 составляющих спектра принимают дискретные значения, кратные основной частоте ω1.

Анализ режима периодических негармонических колебаний в в электрических цепях

Как было отмечено ранее, в основе анализа лежит принцип наложения. Предположим, что на вход цепи (рис.4.2) подается периодическое воздействие, которое можно представить в виде ряда Фурье:

, (4.3)

Рис. 4.2. Четырехполюсник

Электрическая цепь задается своими частотными характеристиками, а именно: АЧХ - |H(jw)| и ФЧХ - Q (w). Требуется определить реакцию u2 (t).

Предположим, что воздействие к цепи было приложено задолго до момента наблюдения так, что к моменту наблюдения каждая из составляющих реакции, обусловленная соответствующей гармонической составляющей воздействия, будет гармоническим колебанием. Таким образом, будем искать установившуюся периодическую реакцию.

Выделим из (4.3) отдельную гармоническую составляющую

Umk cos(kw 1t+j k).

Реакция на эту составляющую может быть найдена с помощью АЧХ и ФЧХ.

Причем, амплитуда реакции равна амплитуде U воздействия, умноженной на значение |Н(jкω1)| АЧХ цепи при частоте кω1 воздействующей гармоники, а начальная фаза реакции сумме начальной фазы воздействия φк и значения q (кω1) ФЧХ цепи на частоте воздействующей гармоники. Таким образом, реакция на выделенную составляющую запишется в виде:

Umk|H(jkw1)| cos [kw1t+j k+q (kw1)].

Аналогично находят реакцию на постоянную составляющую воздействия.

Согласно принципу наложения полная реакция

u2(t)=U0|H(j0)| +Umk|H(jkw 1)| cos [kw 1t+j k+q (kw 1)] , (4.4)

При практических расчетах, как было отмечено, имеют дело с конечным числом членов ряда Фурье.

Пример. Для цепи рис.4.3 определить установившуюся реакцию на воздействие

u1(t)=.

Параметры цепи: R=100 Ом ; L=10 –4 Гн

рис.4.3

Комплексная функция передачи, АЧХ и ФЧХ для данной цепи имеют вид:

, (4.5)

 

Согласно (4.5) реакция на заданное воздействие:

По формулам (4.5) при заданных параметрах определяем:

|Н(0)| = 0; |Н(j106)| = 0,707; |Н(j2·106)| = 0,894; θ(106) = 45о; θ(2·106) = 27о

и искомую реакцию:

Анализ спектрального состава непериодического сигнала

Непериодический сигнал f(t), например единичный прямоугольный импульс, (рис. 6)

можно представить как периодический с периодом Т ∞. При этом амплитуды гармонических составляющих, согласно (4.2), будут стремиться к нулю, т.е. станут бесконечно малыми величинами. Кроме того, расстояние между спектральными составляющими, которое определяется основной частотой ω1=2π/Т также становится бесконечно малой величиной и спектр из дискретного преобразуется в сплошной.

Таким образом, непериодическое колебание можно рассматривать как сумму бесконечного числа бесконечно малых по амплитуде гармонических колебаний, частоты которых отличаются на бесконечно малые величины и заполняют весь частотный диапазон. Ряд Фурье преобразуется в известный из математики интеграл Фурье:

(4.6)

где

(4.7)

Предполагается, что функция f(t) во всяком конечном промежутке удовлетворяет условиям Дирихле, абсолютно интегрируема в бесконечных пределах и f(t)=0 при t<0. Для нас важно, что (4.6) представляет из себя интегральную сумму бесконечно большого числа гармонических колебаний с бесконечно малыми амплитудами |F()|/π, νачальными фазами φ(ω) и частотами ω, непрерывно изменяющимися от ω=0 до ω→ ∞.

Функция |F()| называется спектральной плотностью амплитуд, т.к. амплитуда составляющих для каждого бесконечно малого диапазона частот от ω до ω+ пропорциональна значению этой функции. Функция φ(ω) характеризует спектр фаз непериодического сигнала. Комплексную функцию F(jω) называют комплексной спектральной плотностью, а соотношение (4.7)-односторонним преобразованием Фурье.

Нетрудно увидеть аналогию и связь преобразований Лапласа и Фурье. Одностороннее преобразование Фурье F(jω) может быть получено из преобразования Лапласа F(p) при p = ,т.е.

F(jω)=F(p) |p=jω , (4.8)

Соотношение (4.10) может быть использовано для анализа спектрального состава различных сигналов с использованием обширных таблиц преобразований Лапласа.

Пример 1. Определить спектральную плотность амплитуд и спектр фаз экспоненциальной функции f(t) =A oe-αt.

Воспользуемся известным преобразованием Лапласа от данной функции и соотношением (4.8). Тогда комплексная спектральная плотность

.

Откуда спектральная плотность амплитуд |F(jω)|=A o/(a 2+ω2)1/2 и спектр фаз φ(w )= - arctg(ω/a ).

Графики этих функций представлены на рис.4.7. Спектр экспоненциального сигнала сосредоточен в области нижних частот.

Пример 2. Определить спектральную плотность амплитуд и спектр фаз единичной импульсной функции f(t)=δ(t). Согласно табл.3.1 F(p)=1.

Следовательно, F(jω)=1; |F(jω)|=1; φ(ω)=0. Спектр единичного импульса равномерно распределен по всей частотной оси от ω=0 до ω=∞.

Рис. 4.8.

4.7. Спектральный метод анализа электрических цепей

Пусть на входе некоторой линейной системы действует входной сигнал u1(t), заданный в виде интеграла Фурье:

(4.9)

Линейная система задана своими частотными характеристиками, а именно: АЧХ - |H(jω)| и ФЧХ - θ(ω). Имея в виду, что (4.12) является интегральной суммой гармонических составляющих, и применяя принцип суперпозиции, можно вычислить реакцию u2(t) на выходе системы с помощью частотных характеристик аналогично тому, как это было сделано для периодического воздействия в разделе 4.3. Тогда получим:

, (4.10)

Полученное соотношение (4.10) является интегралом Фурье для выходного сигнала. Причем, спектральные характеристики выходного сигнала

|U2(jw )| = |U1(jw )| × |H(jw )| , j 2(w ) = j 1(w ) +q (w , (4.11)

Очевидно, что формулы (4.11) можно объединить в одну

U2(jw ) = U1(jw ) × H(jw ) , (4.12)

где U1(jω)=|U1exp(jj 1), U2(jω)=|U2exp(jj 2)– комплексные спектральные плотности воздействия и реакции; H(jω)=|Hexp(jq )– комплексная функция передачи системы.

Таким образом, при спектральном анализе, эффект преобразования сигнала в системе отображается простой алгебраической операцией умножения. Зная АЧХ и ФЧХ цепи, можно найти спектральные характеристики и саму реакцию на любое воздействие, которое может быть представлено интегралом Фурье. Спектральный метод анализа особенно удобен, если система имеет простые (идеализированные) частотные характеристики.

4.8. Условия неискаженной передачи сигналов через электрическую цепь

Для того чтобы при передаче сигнала через электрическую цепь отсутствовали искажения формы сигнала (т.е. функции воздействия и реакции были идентичны), необходимо, чтобы цепь имела частотные характеристики следующего вида:

|H(jω)| = Ko; θ(ω)= - ωto , (4.13)

где Ко и tо – некоторые положительные константы.

Графики частотных характеристик такой неискажающей цепи приведены на рис. 4.11.

Рис. 4.11.

 

Для доказательства приведенного утверждения предположим, что на входе такой неискажающей цепи действует некоторое напряжение u1(t),

представленное интегралом Фурье (4.9).

Тогда, согласно спектральному методу, напряжение на выходе u2(t) определится по (4.10). Подставим в (4.10) указанные АЧХ и ФЧХ (4.13) неискажающей цепи. Тогда получим:

, (4.14)

Сравнивая полученное выражение (4.14) для выходного напряжения с выражением (4.9) для входного напряжения, можно записать:

u2 (t) = Ko u1(t – to) ,(4.15)

Таким образом, при передаче сигнала через рассматриваемую цепь происходит пропорциональное изменение значений сигнала в Ко раз и его задержка на некоторое время to. При этом сигналы на входе и выходе цепи как функции времени идентичны, т.е. не происходит изменение формы сигнала.


 

А также другие работы, которые могут Вас заинтересовать

36437. Эстетическая привлекательность ландшафтов 31 KB
  Современные подходы к оценке эстетической привлекательности ландшафтов. Объективистский подход предполагает выявление объективных критериев эстетической привлекательности кроющихся в физиономических характеристиках самого ландшафта субъективный же указывая на субъективную природу красоты исследует особенности ландшафтноэстетических предпочтений у разных групп людей.Объективистский подход к оценке эстетической привлекательности ландшафтов является в настоящее время наиболее признанным и распространенным. Также к его недостаткам...
36438. Виды воздействия рекреационной деятельности на ОС 25.5 KB
  Ранее исследованиям по анализу туристской деятельности уделялось мало внимания да и то рассматривали воздействие туризма только в определённых точках земного шара или воздействие отдельных его видов. Воздействие туризма на окружающую среду может быть прямым косвенным и побудительным а также положительным и отрицательным. Туризм не может развиваться без взаимодействия с окружающей средой однако с помощью управления развитием туризма и чёткого планирования возможно уменьшить негативное воздействие и увеличить положительное. Положительное...
36439. Национальные парки 30 KB
  Основные задачи национальных парков На национальные парки возлагаются следующие основные задачи: а сохранение природных комплексов уникальных и эталонных природных участков и объектов; б сохранение историкокультурных объектов; в экологическое просвещение населения; г создание условий для регулируемого туризма и отдыха; д разработка и внедрение научных методов охраны природы и экологического просвещения; е осуществление экологического мониторинга; ж восстановление нарушенных природных и историкокультурных комплексов и объектов. Исходя...
36440. Государственные природные заказники России: статус, режим, функции, задачи, перспективы развития ФЗначения 29 KB
  Государственные природные заповедники являются природоохранными научноисследовательскими и экологопросветительскими учреждениями имеющими целью сохранение и изучение естественного хода природных процессов и явлений генетического фонда растительного и животного мира отдельных видов и сообществ растений и животных типичных и уникальных экологических систем. Задачи государственных природных заповедников а осуществление охраны природных территорий в целях сохранения биологического разнообразия и поддержания в естественном состоянии...
36441. Категории и виды ООПТ Арх. Области 26.5 KB
  Области сеть ОПТ: заповедники национальные парки заказники памятники природы. На западе области организовано два среднетаежных НП: Водлозерский природный 3411 км2 и Кенозерский 1397 км2. Первый находится на границе Карелии и Архангельской области и включает девственную тайгу на югозападе Онежского района. В области организовано 36 видовых и комплексных заказников 55 681 км2 или 135 площади области.
36442. Восточно-европейская зона 37 KB
  Ее туристские ресурсы определяются помимо живописности природы море реки леса средневысотные горы возможностью заниматься летними и зимними видами спорта а также большим числом историкокультурных памятников разных эпох музыкальными традициями страны и пр. Природной аттрактивностыо отличаются в первую очередь север страны с его Балтийским побережьем и юг где расположена часть Карпатской горной системы. Что касается привлекательности историкокультурной историкоархитектурной то ею обладают главный туристский центр страны и ее...
36443. Западно-европейская 33.5 KB
  Она привлекает туристов и очень разнообразной природой и множеством историкокультурных историкоархитектурных объектов.; преобладанием воздушных перевозок своих и иностранных туристов над автомобильными. При этом в районе велико число туристов не только летом но и зимой в период когда в доступных для туристов горах есть необходимый снежный покров. Наиболее интересны для туристов города Женева Цюрих Берн столица страны.
36444. Южная Европа 34.5 KB
  Пользуется популярностью у туристов и Мальта со столицей ЛаВалетта известная и памятниками прошлого и своеобразной архитектурой. Район этот очень привлекателен для туристов и в последнее десятилетие пользуется исключительным туристским спросом. Это вполне объяснимо: сочетание морских побережий Атлантического океана и Средиземного моря с их пляжами со средиземноморским и близким к нему климатом внутренняя дифференциация природных условий высокогорные и средневысотные районы плато и низменности от очень влажных до засушливых...
36445. Зарубежная Азия 48 KB
  Азиатские страны населяют представители монголоидной и европеоидной рас говорящие па самых различных языках и диалектах. ЮгоВосточная Азия Континентальный район включает Бирму Таиланд Вьетнам Лаос Камбоджу Малайзию Островной макрорайон включает в себя две страны Индонезию и Филиппины Центральная Азия Япония Корейский район СевероВосточный и Восточный Китай Южный Китай с Тайванем. Среди них Стамбул Турция Амман Иордания древние города Ливана Баальбек Сайда а также организующийся туристский центр страны его...