40805

Частотный (спектральный) метод анализа электрических цепей

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Поскольку частотные характеристики являются характеристиками установившегося режима гармонических колебаний то целесообразно произвольное воздействие представить в виде совокупности гармонических и реакцию линейной цепи искать как совокупность реакций вызванных каждым гармоническим воздействием в отдельности. Таким образом частотный метод анализа включает в себя задачу частотного или спектрального представления воздействия в виде суммы гармонических составляющих с определенными амплитудами начальными фазами и частотами а также задачу...

Русский

2013-10-22

67.46 KB

79 чел.

Лекция 26. Частотный (спектральный) метод анализа электрических цепей

При частотном методе анализа электрическая цепь задается своими частотными характеристиками (АЧХ и ФЧХ), которые в большинстве практических случаев могут быть просто измерены или рассчитаны. При этом необходимо определить реакцию на произвольное (негармоническое) воздействие. Поскольку частотные характеристики являются характеристиками установившегося режима гармонических колебаний, то целесообразно произвольное воздействие представить в виде совокупности гармонических и реакцию линейной цепи искать как совокупность реакций, вызванных каждым гармоническим воздействием в отдельности. Таким образом, частотный метод анализа включает в себя задачу частотного или спектрального представления воздействия в виде суммы гармонических составляющих с определенными амплитудами, начальными фазами и частотами, а также задачу определения реакций цепи на каждую гармоническую составляющую воздействия и их суммирование.

Сформулированные задачи наиболее просто решаются для периодических негармонических воздействий, которые при некоторых ограничениях могут быть представлены в виде гармонического ряда Фурье.

Анализ спектрального состава периодических сигналов

Пусть периодическая функция f(t) имеет период повторения, равный Т так, что f(t+T)=f(t). В качестве примера на рис.4.1 приведен график периодической последовательности видеоимпульсов прямоугольной формы.

Предположим, что периодическая функция удовлетворяет условиям Дирихле:

1) на интервале Т функция должна быть непрерывной или иметь конечное число разрывов только первого рода;

2) число экстремумов функции f(t) на интервале Т должно быть конечно и она не должна обращаться в бесконечность.

Следует отметить, что все периодические функции, с которыми имеют дело в теории цепей, удовлетворяют условиям Дирихле.

При принятых предположениях функция f(t) может быть представлена рядом Фурье:

, (4.1)

где ω1=2π/Т – частота основной (первой) гармоники, которая определяется периодом (частотой) повторения исходной функции f(t); Ак, φк и к·ω1 – амплитуда, начальная фаза и частота к-ой гармоники; Ао /2 – постоянная составляющая, которую можно рассматривать как гармоническую составляющую с нулевой частотой, т.е. при к=0.

Коэффициенты разложения (4.1) определяются известным из математики соотношением:

, (4.2)

Таким образом, периодический сигнал может быть представлен как результат наложения бесконечно большого числа гармонических колебаний. Хотя, теоретически ряд (4.1) бесконечен, для реальных сигналов он быстро сходится, так, что Ак → 0 при увеличении к. Периодическое колебание полностью описывается совокупностью амплитуд Ак и фаз φк в разложении (4.1). Первая совокупность называется спектром амплитуд, вторая – спектром фаз. Периодические сигналы имеют дискретный (линейчатый) спектр, так как частоты к·ω1 составляющих спектра принимают дискретные значения, кратные основной частоте ω1.

Анализ режима периодических негармонических колебаний в в электрических цепях

Как было отмечено ранее, в основе анализа лежит принцип наложения. Предположим, что на вход цепи (рис.4.2) подается периодическое воздействие, которое можно представить в виде ряда Фурье:

, (4.3)

Рис. 4.2. Четырехполюсник

Электрическая цепь задается своими частотными характеристиками, а именно: АЧХ - |H(jw)| и ФЧХ - Q (w). Требуется определить реакцию u2 (t).

Предположим, что воздействие к цепи было приложено задолго до момента наблюдения так, что к моменту наблюдения каждая из составляющих реакции, обусловленная соответствующей гармонической составляющей воздействия, будет гармоническим колебанием. Таким образом, будем искать установившуюся периодическую реакцию.

Выделим из (4.3) отдельную гармоническую составляющую

Umk cos(kw 1t+j k).

Реакция на эту составляющую может быть найдена с помощью АЧХ и ФЧХ.

Причем, амплитуда реакции равна амплитуде U воздействия, умноженной на значение |Н(jкω1)| АЧХ цепи при частоте кω1 воздействующей гармоники, а начальная фаза реакции сумме начальной фазы воздействия φк и значения q (кω1) ФЧХ цепи на частоте воздействующей гармоники. Таким образом, реакция на выделенную составляющую запишется в виде:

Umk|H(jkw1)| cos [kw1t+j k+q (kw1)].

Аналогично находят реакцию на постоянную составляющую воздействия.

Согласно принципу наложения полная реакция

u2(t)=U0|H(j0)| +Umk|H(jkw 1)| cos [kw 1t+j k+q (kw 1)] , (4.4)

При практических расчетах, как было отмечено, имеют дело с конечным числом членов ряда Фурье.

Пример. Для цепи рис.4.3 определить установившуюся реакцию на воздействие

u1(t)=.

Параметры цепи: R=100 Ом ; L=10 –4 Гн

рис.4.3

Комплексная функция передачи, АЧХ и ФЧХ для данной цепи имеют вид:

, (4.5)

 

Согласно (4.5) реакция на заданное воздействие:

По формулам (4.5) при заданных параметрах определяем:

|Н(0)| = 0; |Н(j106)| = 0,707; |Н(j2·106)| = 0,894; θ(106) = 45о; θ(2·106) = 27о

и искомую реакцию:

Анализ спектрального состава непериодического сигнала

Непериодический сигнал f(t), например единичный прямоугольный импульс, (рис. 6)

можно представить как периодический с периодом Т ∞. При этом амплитуды гармонических составляющих, согласно (4.2), будут стремиться к нулю, т.е. станут бесконечно малыми величинами. Кроме того, расстояние между спектральными составляющими, которое определяется основной частотой ω1=2π/Т также становится бесконечно малой величиной и спектр из дискретного преобразуется в сплошной.

Таким образом, непериодическое колебание можно рассматривать как сумму бесконечного числа бесконечно малых по амплитуде гармонических колебаний, частоты которых отличаются на бесконечно малые величины и заполняют весь частотный диапазон. Ряд Фурье преобразуется в известный из математики интеграл Фурье:

(4.6)

где

(4.7)

Предполагается, что функция f(t) во всяком конечном промежутке удовлетворяет условиям Дирихле, абсолютно интегрируема в бесконечных пределах и f(t)=0 при t<0. Для нас важно, что (4.6) представляет из себя интегральную сумму бесконечно большого числа гармонических колебаний с бесконечно малыми амплитудами |F()|/π, νачальными фазами φ(ω) и частотами ω, непрерывно изменяющимися от ω=0 до ω→ ∞.

Функция |F()| называется спектральной плотностью амплитуд, т.к. амплитуда составляющих для каждого бесконечно малого диапазона частот от ω до ω+ пропорциональна значению этой функции. Функция φ(ω) характеризует спектр фаз непериодического сигнала. Комплексную функцию F(jω) называют комплексной спектральной плотностью, а соотношение (4.7)-односторонним преобразованием Фурье.

Нетрудно увидеть аналогию и связь преобразований Лапласа и Фурье. Одностороннее преобразование Фурье F(jω) может быть получено из преобразования Лапласа F(p) при p = ,т.е.

F(jω)=F(p) |p=jω , (4.8)

Соотношение (4.10) может быть использовано для анализа спектрального состава различных сигналов с использованием обширных таблиц преобразований Лапласа.

Пример 1. Определить спектральную плотность амплитуд и спектр фаз экспоненциальной функции f(t) =A oe-αt.

Воспользуемся известным преобразованием Лапласа от данной функции и соотношением (4.8). Тогда комплексная спектральная плотность

.

Откуда спектральная плотность амплитуд |F(jω)|=A o/(a 2+ω2)1/2 и спектр фаз φ(w )= - arctg(ω/a ).

Графики этих функций представлены на рис.4.7. Спектр экспоненциального сигнала сосредоточен в области нижних частот.

Пример 2. Определить спектральную плотность амплитуд и спектр фаз единичной импульсной функции f(t)=δ(t). Согласно табл.3.1 F(p)=1.

Следовательно, F(jω)=1; |F(jω)|=1; φ(ω)=0. Спектр единичного импульса равномерно распределен по всей частотной оси от ω=0 до ω=∞.

Рис. 4.8.

4.7. Спектральный метод анализа электрических цепей

Пусть на входе некоторой линейной системы действует входной сигнал u1(t), заданный в виде интеграла Фурье:

(4.9)

Линейная система задана своими частотными характеристиками, а именно: АЧХ - |H(jω)| и ФЧХ - θ(ω). Имея в виду, что (4.12) является интегральной суммой гармонических составляющих, и применяя принцип суперпозиции, можно вычислить реакцию u2(t) на выходе системы с помощью частотных характеристик аналогично тому, как это было сделано для периодического воздействия в разделе 4.3. Тогда получим:

, (4.10)

Полученное соотношение (4.10) является интегралом Фурье для выходного сигнала. Причем, спектральные характеристики выходного сигнала

|U2(jw )| = |U1(jw )| × |H(jw )| , j 2(w ) = j 1(w ) +q (w , (4.11)

Очевидно, что формулы (4.11) можно объединить в одну

U2(jw ) = U1(jw ) × H(jw ) , (4.12)

где U1(jω)=|U1exp(jj 1), U2(jω)=|U2exp(jj 2)– комплексные спектральные плотности воздействия и реакции; H(jω)=|Hexp(jq )– комплексная функция передачи системы.

Таким образом, при спектральном анализе, эффект преобразования сигнала в системе отображается простой алгебраической операцией умножения. Зная АЧХ и ФЧХ цепи, можно найти спектральные характеристики и саму реакцию на любое воздействие, которое может быть представлено интегралом Фурье. Спектральный метод анализа особенно удобен, если система имеет простые (идеализированные) частотные характеристики.

4.8. Условия неискаженной передачи сигналов через электрическую цепь

Для того чтобы при передаче сигнала через электрическую цепь отсутствовали искажения формы сигнала (т.е. функции воздействия и реакции были идентичны), необходимо, чтобы цепь имела частотные характеристики следующего вида:

|H(jω)| = Ko; θ(ω)= - ωto , (4.13)

где Ко и tо – некоторые положительные константы.

Графики частотных характеристик такой неискажающей цепи приведены на рис. 4.11.

Рис. 4.11.

 

Для доказательства приведенного утверждения предположим, что на входе такой неискажающей цепи действует некоторое напряжение u1(t),

представленное интегралом Фурье (4.9).

Тогда, согласно спектральному методу, напряжение на выходе u2(t) определится по (4.10). Подставим в (4.10) указанные АЧХ и ФЧХ (4.13) неискажающей цепи. Тогда получим:

, (4.14)

Сравнивая полученное выражение (4.14) для выходного напряжения с выражением (4.9) для входного напряжения, можно записать:

u2 (t) = Ko u1(t – to) ,(4.15)

Таким образом, при передаче сигнала через рассматриваемую цепь происходит пропорциональное изменение значений сигнала в Ко раз и его задержка на некоторое время to. При этом сигналы на входе и выходе цепи как функции времени идентичны, т.е. не происходит изменение формы сигнала.


 

А также другие работы, которые могут Вас заинтересовать

66968. ТОРЖЕСТВЕННАЯ ЛИНЕЙКА, ПОСВЯЩЕННАЯ ПРАЗДНИКУ ПЕРВОГО ЗВОНОКА 51.5 KB
  Школа, здравствуй! Учеба, здравствуй! Идем за знаньями в поход. Сегодня праздник! Школьный праздник! Встречаем мы учебный год! ВЕДУЩИЙ 1. Настал поистине чудесный день, Которого мы долго ждали, Ведь в школе нашей – юбилей Поэтому мы здесь собрались!
66969. Spring. Easter 51.5 KB
  Teaching goals: engagement into intercultural communication acquiring knowledge about cultural traditions of other peoples mastering basic skills in listening, speaking Developing goals: development of speaking, intellectual and cognitive abilities...
66970. Осень – лету конец, всей работе венец 44 KB
  Цель: познакомить учащихся с результатами работы на учебно-опытном участке, с явлениями, происходящими в природе осенью, с народными обычаями и традициями, связанными с этим временем года. Показать необходимость проведения опытнической и исследовательской работы в природе и на участке.
66971. Кто же все-таки человек: раб природы или ее господин? 42.5 KB
  На эту дилемму по-разному отвечали мыслители прошлого нет единого мнения и у современников. На ваших рабочих листках написаны названия объектов природы: Воздух Земля Вода Растения Животные Человек. По окончании работы заслушиваются ответы учащихся...
66972. Екологічна агітбригада «Юні екологи» 51 KB
  Хід заходу Учень: Сьогодні іскристо вирує наснага І щедрість природа дарує всякчас Тому всі сприймайте нас дуже серйозно Ми просимо слухайте слухайте нас Учень: Доброго дня друзі Вас вітає команда Юні екологи Учень: Ми знову тут бо іржа байдужості Вже роз'їдає день...
66974. Гроші. Історія українських грошей 209.5 KB
  Мета: Формувати уявлення про гроші для чого і як вони виникли які є їх форми дізнатися про призначення грошей. Познайомити учнів коли з якою метою запроваджені гроші в Україні Продовжувати розкривати основи економічної психології для молодших школярів.
66975. «Пані Економіка» Інтелектуально-ігрова програма 105.5 KB
  Економічна культура формується здебільшого через освіту і виховання. Економічна освіта полягає у формуванні економічних знань, вмінь та навичок господарювання, засвоєння попереднього досвіду у соціально-економічній діяльності. Економічна освіта спрямована на зміну економічної поведінки людей.
66976. Поняття економіки як сфери життя і діяльності людини 175 KB
  Мета: ознайомити учнів з поняттям нової учбової дисципліни, а також про те, для чого потрібно знати, вивчати «Цікаву економіку», показати залежність життя людей від рівня розвитку економіки; розвивати мислення, пам’ять; виховувати інтерес до суспільного життя в рідній державі.