40805

Частотный (спектральный) метод анализа электрических цепей

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Поскольку частотные характеристики являются характеристиками установившегося режима гармонических колебаний то целесообразно произвольное воздействие представить в виде совокупности гармонических и реакцию линейной цепи искать как совокупность реакций вызванных каждым гармоническим воздействием в отдельности. Таким образом частотный метод анализа включает в себя задачу частотного или спектрального представления воздействия в виде суммы гармонических составляющих с определенными амплитудами начальными фазами и частотами а также задачу...

Русский

2013-10-22

67.46 KB

75 чел.

Лекция 26. Частотный (спектральный) метод анализа электрических цепей

При частотном методе анализа электрическая цепь задается своими частотными характеристиками (АЧХ и ФЧХ), которые в большинстве практических случаев могут быть просто измерены или рассчитаны. При этом необходимо определить реакцию на произвольное (негармоническое) воздействие. Поскольку частотные характеристики являются характеристиками установившегося режима гармонических колебаний, то целесообразно произвольное воздействие представить в виде совокупности гармонических и реакцию линейной цепи искать как совокупность реакций, вызванных каждым гармоническим воздействием в отдельности. Таким образом, частотный метод анализа включает в себя задачу частотного или спектрального представления воздействия в виде суммы гармонических составляющих с определенными амплитудами, начальными фазами и частотами, а также задачу определения реакций цепи на каждую гармоническую составляющую воздействия и их суммирование.

Сформулированные задачи наиболее просто решаются для периодических негармонических воздействий, которые при некоторых ограничениях могут быть представлены в виде гармонического ряда Фурье.

Анализ спектрального состава периодических сигналов

Пусть периодическая функция f(t) имеет период повторения, равный Т так, что f(t+T)=f(t). В качестве примера на рис.4.1 приведен график периодической последовательности видеоимпульсов прямоугольной формы.

Предположим, что периодическая функция удовлетворяет условиям Дирихле:

1) на интервале Т функция должна быть непрерывной или иметь конечное число разрывов только первого рода;

2) число экстремумов функции f(t) на интервале Т должно быть конечно и она не должна обращаться в бесконечность.

Следует отметить, что все периодические функции, с которыми имеют дело в теории цепей, удовлетворяют условиям Дирихле.

При принятых предположениях функция f(t) может быть представлена рядом Фурье:

, (4.1)

где ω1=2π/Т – частота основной (первой) гармоники, которая определяется периодом (частотой) повторения исходной функции f(t); Ак, φк и к·ω1 – амплитуда, начальная фаза и частота к-ой гармоники; Ао /2 – постоянная составляющая, которую можно рассматривать как гармоническую составляющую с нулевой частотой, т.е. при к=0.

Коэффициенты разложения (4.1) определяются известным из математики соотношением:

, (4.2)

Таким образом, периодический сигнал может быть представлен как результат наложения бесконечно большого числа гармонических колебаний. Хотя, теоретически ряд (4.1) бесконечен, для реальных сигналов он быстро сходится, так, что Ак → 0 при увеличении к. Периодическое колебание полностью описывается совокупностью амплитуд Ак и фаз φк в разложении (4.1). Первая совокупность называется спектром амплитуд, вторая – спектром фаз. Периодические сигналы имеют дискретный (линейчатый) спектр, так как частоты к·ω1 составляющих спектра принимают дискретные значения, кратные основной частоте ω1.

Анализ режима периодических негармонических колебаний в в электрических цепях

Как было отмечено ранее, в основе анализа лежит принцип наложения. Предположим, что на вход цепи (рис.4.2) подается периодическое воздействие, которое можно представить в виде ряда Фурье:

, (4.3)

Рис. 4.2. Четырехполюсник

Электрическая цепь задается своими частотными характеристиками, а именно: АЧХ - |H(jw)| и ФЧХ - Q (w). Требуется определить реакцию u2 (t).

Предположим, что воздействие к цепи было приложено задолго до момента наблюдения так, что к моменту наблюдения каждая из составляющих реакции, обусловленная соответствующей гармонической составляющей воздействия, будет гармоническим колебанием. Таким образом, будем искать установившуюся периодическую реакцию.

Выделим из (4.3) отдельную гармоническую составляющую

Umk cos(kw 1t+j k).

Реакция на эту составляющую может быть найдена с помощью АЧХ и ФЧХ.

Причем, амплитуда реакции равна амплитуде U воздействия, умноженной на значение |Н(jкω1)| АЧХ цепи при частоте кω1 воздействующей гармоники, а начальная фаза реакции сумме начальной фазы воздействия φк и значения q (кω1) ФЧХ цепи на частоте воздействующей гармоники. Таким образом, реакция на выделенную составляющую запишется в виде:

Umk|H(jkw1)| cos [kw1t+j k+q (kw1)].

Аналогично находят реакцию на постоянную составляющую воздействия.

Согласно принципу наложения полная реакция

u2(t)=U0|H(j0)| +Umk|H(jkw 1)| cos [kw 1t+j k+q (kw 1)] , (4.4)

При практических расчетах, как было отмечено, имеют дело с конечным числом членов ряда Фурье.

Пример. Для цепи рис.4.3 определить установившуюся реакцию на воздействие

u1(t)=.

Параметры цепи: R=100 Ом ; L=10 –4 Гн

рис.4.3

Комплексная функция передачи, АЧХ и ФЧХ для данной цепи имеют вид:

, (4.5)

 

Согласно (4.5) реакция на заданное воздействие:

По формулам (4.5) при заданных параметрах определяем:

|Н(0)| = 0; |Н(j106)| = 0,707; |Н(j2·106)| = 0,894; θ(106) = 45о; θ(2·106) = 27о

и искомую реакцию:

Анализ спектрального состава непериодического сигнала

Непериодический сигнал f(t), например единичный прямоугольный импульс, (рис. 6)

можно представить как периодический с периодом Т ∞. При этом амплитуды гармонических составляющих, согласно (4.2), будут стремиться к нулю, т.е. станут бесконечно малыми величинами. Кроме того, расстояние между спектральными составляющими, которое определяется основной частотой ω1=2π/Т также становится бесконечно малой величиной и спектр из дискретного преобразуется в сплошной.

Таким образом, непериодическое колебание можно рассматривать как сумму бесконечного числа бесконечно малых по амплитуде гармонических колебаний, частоты которых отличаются на бесконечно малые величины и заполняют весь частотный диапазон. Ряд Фурье преобразуется в известный из математики интеграл Фурье:

(4.6)

где

(4.7)

Предполагается, что функция f(t) во всяком конечном промежутке удовлетворяет условиям Дирихле, абсолютно интегрируема в бесконечных пределах и f(t)=0 при t<0. Для нас важно, что (4.6) представляет из себя интегральную сумму бесконечно большого числа гармонических колебаний с бесконечно малыми амплитудами |F()|/π, νачальными фазами φ(ω) и частотами ω, непрерывно изменяющимися от ω=0 до ω→ ∞.

Функция |F()| называется спектральной плотностью амплитуд, т.к. амплитуда составляющих для каждого бесконечно малого диапазона частот от ω до ω+ пропорциональна значению этой функции. Функция φ(ω) характеризует спектр фаз непериодического сигнала. Комплексную функцию F(jω) называют комплексной спектральной плотностью, а соотношение (4.7)-односторонним преобразованием Фурье.

Нетрудно увидеть аналогию и связь преобразований Лапласа и Фурье. Одностороннее преобразование Фурье F(jω) может быть получено из преобразования Лапласа F(p) при p = ,т.е.

F(jω)=F(p) |p=jω , (4.8)

Соотношение (4.10) может быть использовано для анализа спектрального состава различных сигналов с использованием обширных таблиц преобразований Лапласа.

Пример 1. Определить спектральную плотность амплитуд и спектр фаз экспоненциальной функции f(t) =A oe-αt.

Воспользуемся известным преобразованием Лапласа от данной функции и соотношением (4.8). Тогда комплексная спектральная плотность

.

Откуда спектральная плотность амплитуд |F(jω)|=A o/(a 2+ω2)1/2 и спектр фаз φ(w )= - arctg(ω/a ).

Графики этих функций представлены на рис.4.7. Спектр экспоненциального сигнала сосредоточен в области нижних частот.

Пример 2. Определить спектральную плотность амплитуд и спектр фаз единичной импульсной функции f(t)=δ(t). Согласно табл.3.1 F(p)=1.

Следовательно, F(jω)=1; |F(jω)|=1; φ(ω)=0. Спектр единичного импульса равномерно распределен по всей частотной оси от ω=0 до ω=∞.

Рис. 4.8.

4.7. Спектральный метод анализа электрических цепей

Пусть на входе некоторой линейной системы действует входной сигнал u1(t), заданный в виде интеграла Фурье:

(4.9)

Линейная система задана своими частотными характеристиками, а именно: АЧХ - |H(jω)| и ФЧХ - θ(ω). Имея в виду, что (4.12) является интегральной суммой гармонических составляющих, и применяя принцип суперпозиции, можно вычислить реакцию u2(t) на выходе системы с помощью частотных характеристик аналогично тому, как это было сделано для периодического воздействия в разделе 4.3. Тогда получим:

, (4.10)

Полученное соотношение (4.10) является интегралом Фурье для выходного сигнала. Причем, спектральные характеристики выходного сигнала

|U2(jw )| = |U1(jw )| × |H(jw )| , j 2(w ) = j 1(w ) +q (w , (4.11)

Очевидно, что формулы (4.11) можно объединить в одну

U2(jw ) = U1(jw ) × H(jw ) , (4.12)

где U1(jω)=|U1exp(jj 1), U2(jω)=|U2exp(jj 2)– комплексные спектральные плотности воздействия и реакции; H(jω)=|Hexp(jq )– комплексная функция передачи системы.

Таким образом, при спектральном анализе, эффект преобразования сигнала в системе отображается простой алгебраической операцией умножения. Зная АЧХ и ФЧХ цепи, можно найти спектральные характеристики и саму реакцию на любое воздействие, которое может быть представлено интегралом Фурье. Спектральный метод анализа особенно удобен, если система имеет простые (идеализированные) частотные характеристики.

4.8. Условия неискаженной передачи сигналов через электрическую цепь

Для того чтобы при передаче сигнала через электрическую цепь отсутствовали искажения формы сигнала (т.е. функции воздействия и реакции были идентичны), необходимо, чтобы цепь имела частотные характеристики следующего вида:

|H(jω)| = Ko; θ(ω)= - ωto , (4.13)

где Ко и tо – некоторые положительные константы.

Графики частотных характеристик такой неискажающей цепи приведены на рис. 4.11.

Рис. 4.11.

 

Для доказательства приведенного утверждения предположим, что на входе такой неискажающей цепи действует некоторое напряжение u1(t),

представленное интегралом Фурье (4.9).

Тогда, согласно спектральному методу, напряжение на выходе u2(t) определится по (4.10). Подставим в (4.10) указанные АЧХ и ФЧХ (4.13) неискажающей цепи. Тогда получим:

, (4.14)

Сравнивая полученное выражение (4.14) для выходного напряжения с выражением (4.9) для входного напряжения, можно записать:

u2 (t) = Ko u1(t – to) ,(4.15)

Таким образом, при передаче сигнала через рассматриваемую цепь происходит пропорциональное изменение значений сигнала в Ко раз и его задержка на некоторое время to. При этом сигналы на входе и выходе цепи как функции времени идентичны, т.е. не происходит изменение формы сигнала.


 

А также другие работы, которые могут Вас заинтересовать

33894. Поиск путей обновления общественно-политической жизни в СССР в 1953-1955 гг 37 KB
  Маленков председатель Совмина глава министерства Берия МВД МГБ зам председателя совмина Каганович первый заместитель председателя Совета Министров СССР с 1952 года член Президиума ЦК КПСС Молотов МИД Булганин министр обороны Ворошилов председатель президиума верховного совета. После этого большую власть получил Маленков заявление о группе В нужно поднимать деревню. На ней учредили пост 1 секретаря на который избрали Хрущева доклад Хрущева о с х Январь 1955 пленум ЦК КПСС слушалось дело Маленкова которого обвинили в...
33895. ХХ съезд КПСС и его историческое значение. Борьба с оппозицией в послевоенный период 27.5 KB
  Первоначально преодоление культа личности сводилось к перестройке пропаганды 1953 но Маленков заявил что дело не только в этом ведь этот вопрос связан с вопросом коллективного руководства.1956 доклад Хрущева О культе личности и его последствиях. Идея попытки преодолеть культ личности принадлежит Маленкову а не Хрущеву. Все идеи доклада были повторены в постановлении ЦК: в стране сложился культ личности Сталина вопрос о причинах свелся к личным качествам Сталина опубликованы последние работы Ленина культ личности не...
33896. Индустриальное развитие страны в 50-х гг 53.5 KB
  Индустриальное развитие страны в 50х гг. широкое развитие получает НТП. Индустриальное развитие шло по пятилеткам 19511955 пятая 19561960 шестая. Достижения в транспорте воздушный реактивные самолеты в пассажирских перевозках водный суда на подводных крыльях морской атомный ледокол сухопутный переход на электровозы и электрички автомобильный примитивное развитие трубопроводный трубопровод Дружба.
33897. Сельское хозяйство СССР в 50-х гг 27.5 KB
  Еще на XIX съезде заявили что продовольственная проблема решена но это было ложью. Вопрос о насыщении с х техникой и снабжении кадрами для этой техники проблема кадров инженернотехнического профиля. В январе 1955 на пленуме Хрущев поставил задачу подъема животноводства проблема кормов. Проблема раскрестьянивания одна из главных в нашей историографии.
33898. Попытки перестройки системы управления народным хозяйством в 50-х – первой половине 60-х гг 38 KB
  Попытки перестройки системы управления народным хозяйством в 50х первой половине 60х гг. Попытка усовершенствования структуры управления рычага АКС: признано что главный порок экономики чрезмерная централизация управления многоступенчатость управления до 6 звеньев огромное количество чиновников отрыв аппарата от управления производством. Вопросы реформирования управления промышленность ставились на XX съезде. С 1957 началась реформа управления промышленностью.
33899. Развитие искусства в период «оттепели». Международные культурные связи 30 KB
  Развитие искусства в период оттепели. проявилась ограниченность развитие связей с заграницей международный конкурс Чайковского в 1958 с 1956 проводиться в Москве кинофестиваль в 1956 выставка Дрезденской галереи в Москве 1957 фестиваль молодежи в Москве новые произведения антисталинсткой направленности Солженицын. качественные изменения в материальной базе культуры радиофикация электрификация развитие телевидения. развитие альтернативного искусства в литературе.
33900. Внешнеполитическая деятельность СССР в 50-х – начале 60-х гг.: отношения с социалистическими странами 34 KB
  Внешнеполитическая деятельность СССР в 50х начале 60х гг. СССр послал в Югославию комиссии для изучения того что сделано за годы разрыва. Официальный разрыв в 1960 когда КПК обвинила СССР в ревизионизме. Отказавшись от курса на мировую революцию СССР продолжал занимать руководящие позиции в лагере социалистических стран.
33901. Внешнеполитическая деятельность СССР в 50-х – начале 60-х гг.: отношения с развивающимися государствами 36.5 KB
  Внешнеполитическая деятельность СССР в 50х начале 60х гг. СССР оказывает экономическую помощь странам 3го мира. успех СССР в мире Женевская конференция в 1954 и 1955. СССР оказывает экономическую помощь странам 3го мира.
33902. Относительные величины, используемые в статистической практике 23.61 KB
  Относительная величина структуры ОВС характеризует структуру совокупности определяет долю удельный вес части в общем объеме совокупности. ОВС рассчитывают как отношение объема части совокупности к абсолютной величине всей совокупности определяя тем самым удельный вес части в общем объеме совокупности : Относительная величина координации ОВК отношение одной части совокупности к другой ее части; показываетсколько единиц части стоящих в числителе формулы приходится на единицу другой части находящейся в знаменателе....