40807

Линии без искажений

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Пусть сигнал который требуется передать без искажений по линии является периодическим т. Таким образом для отсутствия искажений что очень важно например в линиях передачи информации необходимо чтобы все гармоники распространялись с одинаковой скоростью и одинаковым затуханием поскольку только в этом случае сложившись они образуют в конце линии сигнал подобный входному. Однако искажения могут отсутствовать и в линии с потерями.

Русский

2013-10-22

80.64 KB

0 чел.

Лекция 28_Линии без искажений.

Пусть сигнал, который требуется передать без искажений по линии, является периодическим, т.е. его можно разложить в ряд Фурье. Сигнал будет искажаться, если для составляющих его гармонических затухание и фазовая скорость различны, т.е. если последние являются функциями частоты. Таким образом, для отсутствия искажений, что очень важно, например, в линиях передачи информации, необходимо, чтобы все гармоники распространялись с одинаковой скоростью и одинаковым затуханием, поскольку только в этом случае, сложившись, они образуют в конце линии сигнал, подобный входному.

Идеальным в этом случае является так называемая линия без потерь, у которой сопротивление  и проводимость  равны нулю.

Действительно, в этом случае

,

т.е. независимо от частоты коэффициент затухания  и фазовая скорость

.

Однако искажения могут отсутствовать и в линии с потерями. Условие передачи сигналов без искажения вытекает из совместного рассмотрения выражений для постоянной распространения

(1)

и фазовой скорости

.   

(2)

Из (1) и (2) вытекает, что для получения  и , что обеспечивает отсутствие искажений, необходимо, чтобы , т.е. чтобы волновое сопротивление не зависело от частоты.

(3)

Как показывает анализ (3), при

 

(4)

 есть вещественная константа.

Линия, параметры которой удовлетворяют условию (4), называется линией без искажений.

Фазовая скорость для такой линии

и затухание

.

Следует отметить, что у реальных линий (и воздушных, и кабельных) . Поэтому для придания реальным линиям свойств линий без искажения искусственно увеличивают их индуктивность путем включения через одинаковые интервалы специальных катушек индуктивности, а в случае кабельных линий – также за счет обвивания их жил ферромагнитной лентой.

Уравнения линии конечной длины

Постоянные  и  в полученных в предыдущей лекции формулах

;  

(5)

   

(6)

определяются на основании граничных условий.

Пусть для линии длиной l (см. рис. 1) заданы напряжение  и ток  в начале линии, т.е. при .

Тогда из (5) и (6) получаем

откуда

Подставив найденные выражения  и  в (5) и (6), получим

        

(7)

   

(8)

Уравнения (7) и (8) позволяют определить ток и напряжение в любой точке линии по их известным значениям в начале линии. Обычно в практических задачах бывают заданы напряжение  и ток  в конце линии. Для выражения напряжения и тока в линии через эти величины перепишем уравнения (5) и (6) в виде

;  

(9)

(10)

Обозначив  и , из уравнений (9) и (10) при  получим

откуда

После подстановки найденных выражений  и  в (9) и (10) получаем уравнения, позволяющие определить ток и напряжение по их значениям в конце линии

;

(11)

(12)

Уравнения длинной линии как четырехполюсника

В соответствии с (11) и (12) напряжения и токи в начале и в конце линии связаны между собой соотношениями

;

.

Эти уравнения соответствуют уравнениям симметричного четырехполюсника, коэффициенты которого ;  и ; при этом условие  выполняется.

Указанное означает, что к длинным линиям могут быть применены элементы теории четырехполюсников, и, следовательно, как всякий симметричный четырехполюсник, длинная линия может быть представлена симметричной Т- или П- образной схемами замещения.

Определение параметров длинной линии из опытов холостого хода и короткого замыкания

Как и у четырехполюсников, параметры длинной линии могут быть определены из опытов холостого хода (ХХ) и короткого замыкания (КЗ).

При ХХ  и , откуда входное сопротивление

.      

(13)

При КЗ  и . Следовательно,

.    

(14)

На основании (13) и (14)

 

(15)

и

,

откуда

.       

(16)

Выражения (15) и (16) на основании данных эксперимента позволяют определить вторичные параметры  и  линии, по которым затем могут быть рассчитаны ее первичные параметры  и .

 

Линия без потерь

Линией без потерь называется линия, у которой первичные параметры  и  равны нулю. В этом случае, как было показано ранее,  и . Таким образом,

,

откуда .

Раскроем гиперболические функции от комплексного аргумента :

Тогда для линии без потерь, т.е. при , имеют место соотношения:

  и  .

Таким образом, уравнения длинной линии в гиперболических функциях от комплексного аргумента для линии без потерь трансформируются в уравнения, записанные с использованием круговых тригонометрических функций от вещественного аргумента:

(17)

.     

(18)

Строго говоря, линия без потерь (цепь с распределенными параметрами без потерь) представляет собой идеализированный случай. Однако при выполнении  и , что имеет место, например, для высокочастотных цепей, линию можно считать линией без потерь и, следовательно, описывать ее уравнениями (17) и (18).

Стоячие волны в длинных линиях

Как было показано выше, решение уравнений длинной линии можно представить в виде суммы прямой и обратной волн. В результате их наложения в цепях с распределенными параметрами возникают стоячие волны.

Рассмотрим два предельных случая: ХХ и КЗ в линии без потерь, когда поглощаемая приемником активная мощность равна нулю.

При ХХ на основании уравнений (17) и (18) имеем

  и  ,

откуда для мгновенных значений напряжения и тока можно записать

(19)

.  

(20)

Последние уравнения представляют собой уравнения стоячих волн, являющихся результатом наложения прямой и обратной волн с одинаковыми амплитудами.

При ХХ в соответствии с (19) и (20) в точках с координатами , где  - целое число, имеют место максимумы напряжения, называемые пучностями, и нули тока, называемые узлами. В точках с координатами  пучности и узлы напряжения и тока меняются местами (см. рис. 2). Таким образом, узлы и пучности неподвижны, и пучности одной переменной совпадают с узлами другой и наоборот.

При КЗ на основании уравнений (17) и (18)

  и ,

откуда для мгновенных значений можно записать

т.е. и в этом случае напряжение и ток представляют собой стоячие волны, причем по сравнению с режимом ХХ пучности и узлы напряжения и тока соответственно меняются местами.

Поскольку в узлах мощность тождественно равна нулю, стоячие волны в передаче энергии вдоль линии не участвуют. Ее передают только бегущие волны. Чем сильнее нагрузка отличается от согласованной, тем сильнее выражены обратные и, следовательно, стоячие волны. В рассмотренных предельных случаях ХХ и КЗ имеют место только стоячие волны, и мощность на нагрузке равна нулю.


 

А также другие работы, которые могут Вас заинтересовать

42758. Построение циклов с инструкциями „while” и „repeat” 162.5 KB
  Инструкция whiledo Особенность этой инструкции состоит в том что условие проверяется перед входом в тело цикла поэтому цикл while называют еще циклом с предусловием.1 Синтаксис инструкции whiledo В этом описании условие продолжения это выражение логического типа определяющее условие при котором выполняются инструкции тела цикла . В целом инструкция while выполняется следующим образом: Вычисляется значение выражения условие продолжения . Если значение выражения условие равно flse то есть условие не выполняется выполнение...
42759. Динамический режим средств измерений 88 KB
  Ход работы: Спецификация используемых СИ: Наименование СИ Диапазон измерений Характеристики СИ классы точности Рабочий диапазон частот Параметры входа выхода Милливольтметр GVT417B 300 мкВ 100В 12 пределов Приведённая погрешность 3 20 Гц 200 кГц RBх=1 МОм СBх=50 пФ Вольтметр универсальный цифровой GDH8135 На постоянном токе 200 мВ 2 В 20 В 200 В 1200 В Пределы макс. 40 Гц 1 кГц RBx ≥ 10 МОм Осцилогр. 5 мВ дел 3 3 0 20 мГц Rвх = 1 МОм Определение динамической погрешности: β = 03 f0 = 04 кГц Кр = 1 мс дел Uut 178 178...
42761. Работа с документом в Microsoft Word 346.5 KB
  Работа с документом в Microsoft Word Выполнив эту лабораторную работу Вы сможете: познакомиться со структурой окна редактора MS Word; повторить технологию открытия документа; научиться менять размеры окна документа; освоить технологию исправления ошибок в документе с помощью средств MS Word; узнать технологию изменения режимов просмотра документа; выяснить назначение пунктов меню Файл и Вид. Работа с окном документа Текстовый процессор MS Word 97 сохраняет документы преимущественно в файлах имеющих расширение doc. Договоримся что все файлы...
42763. Перемещение по документу. Строка состояния 336.5 KB
  Строка состояния С помощью этой лабораторной работой Вы сможете: выяснить приемы перемещения по документу с помощью мыши и клавиатуры; потренироваться в работе со встроенной Справкой; выяснить технологию вставки одного документа MS Word в другой; изучить структуру и назначение элементов строки состояния. Перемещение с помощью мыши Перемещение по тексту с помощью мыши осуществляется с помощью вертикальной и горизонтальной полос прокрутки и кнопок расположенных в нижней части вертикальной полосы Рис. Назначение компонент вертикальной полосы...