40808

Переходные процессы в цепях с распределенными параметрами

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Пример такого сведения на основе принципа наложения для задачи на подключение в конце линии нагрузки схематично иллюстрирует рис. Таким образом если к линии в общем случае заряженной подключается некоторый в общем случае активный двухполюсник то для нахождения возникающих волн необходимо определить напряжение на разомкнутых контактах ключа рубильника после чего рассчитать токи и напряжения в схеме с сосредоточенными параметрами включаемой на это напряжение при нулевых начальных условиях. При отключении нагрузки или участков линии для...

Русский

2013-10-22

63.07 KB

24 чел.

Лекция 29_Переходные процессы в цепях с распределенными параметрами.

С учетом граничных условий расчет переходных процессов в цепях с распределенными параметрами можно проводить как при нулевых, так и ненулевых начальных условиях. Однако в первом случае анализ осуществляется в целом проще, что определяет целесообразность сведения расчета к нулевым начальным условиям. Пример такого сведения на основе принципа наложения для задачи на подключение в конце линии нагрузки схематично иллюстрирует рис. 1, где в последней схеме сопротивление  имитирует входное сопротивление активного двухполюсника.

Таким образом, если к линии, в общем случае заряженной, подключается некоторый в общем случае активный двухполюсник, то для нахождения возникающих волн необходимо определить напряжение  на разомкнутых контактах ключа (рубильника), после чего рассчитать токи и напряжения в схеме с сосредоточенными параметрами, включаемой на это напряжение  при нулевых начальных условиях. Полученные напряжения и токи накладываются на соответствующие величины предыдущего режима.

При отключении нагрузки или участков линии для расчета возникающих волн напряжения и тока также можно пользоваться методом сведения задачи к нулевым начальным условиям. В этом случае, зная ток  в ветви с размыкаемым ключом (рубильником), необходимо рассчитать токи и напряжения в линии при подключении источника тока  противоположного направления непосредственно к концам отключаемой ветви. Затем полученные токи и напряжения также накладываются на предыдущий режим.

В качестве примера такого расчета рассмотрим длинную линию без потерь на рис. 2, находящуюся под напряжением , к которой подключается дополнительный приемник с сопротивлением .

В соответствии со сформулированным выше правилом схема для расчета возникающих при коммутации волн будет иметь вид на рис. 3. Здесь

;

и в соответствии с законом Ома для волн

.

Соответствующие полученным выражениям эпюры распределения напряжения и тока вдоль линии представлены на рис. 4.

Отметим, что, поскольку

,

к источнику от места подключения нагрузки  пошла волна, увеличивающая ток на этом участке.

Если наоборот приемник с сопротивлением  не подключается, а отключается, то расчет возникающих при этом волн тока и напряжения следует осуществлять по схеме рис.5.

Правило удвоения волны

Пусть волна произвольной формы движется по линии с волновым сопротивлением  и падает на некоторую нагрузку  (см. рис. 6,а).

Для момента прихода волны к нагрузке можно записать

;

(1)

или

(2)

Складывая (1) и (2), получаем

(3)

Соотношению (3) соответствует расчетная схема замещения с сосредоточенными параметрами, представленная на рис. 6,б. Момент замыкания ключа в этой схеме соответствует моменту падения волны на нагрузку  в реальной линии. При этом, поскольку цепь на рис. 6,б состоит из элементов с сосредоточенными параметрами, то расчет переходного процесса в ней можно проводить любым из рассмотренных ранее методов (классическим, операторным, с использованием интеграла Дюамеля).

Следует отметить, что, если в длинной линии имеет место узел соединения других линий или разветвление, то в соответствии с указанным подходом эту неоднородность следует имитировать резистивным элементом с соответствующим сопротивлением, на который падает удвоенная волна.

Пусть, например, линия с волновым сопротивлением  разветвляется на две параллельные линии с волновыми сопротивлениями  и  (см. рис. 7,а). Узел разветвления в расчетном плане эквивалентен резистивному элементу с сопротивлением

 

,

при этом расчетная схема замещения для момента прихода волны к стыку линий имеет вид на рис. 7,б.

Так, если падающая волна напряжения имеет прямоугольную форму и величину , то в соответствии со схемой замещения на рис. 7,б напряжение на стыке линий в момент прихода волны

.

Этой величине будут равны волны напряжения, которые пойдут далее в линии с волновыми сопротивлениями  и . Отраженная же волна, которая пойдет по линии с волновым сопротивлением , будет характеризоваться напряжением

.

Таким образом, по правилу удвоения волны определяются отраженные (появившиеся в результате отражения от неоднородности) и преломленные (прошедшие через неоднородность) волны, расчет которых осуществляется по схемам замещения с сосредоточенными параметрами. Следовательно, методика расчета переходных процессов в цепях с распределенными параметрами состоит в последовательном составлении схем замещения с сосредоточенными параметрами для каждого момента прихода очередной падающей волны на очередную неоднородность и расчете по ним отраженных и преломленных волн.

В качестве примера рассмотрим падение прямоугольной волны напряжения величиной  на включенный в конце линии конденсатор  (см. рис. 8,а).

Для расчета напряжения на конденсаторе и тока через него в момент прихода волны к концу линии составим схему замещения с сосредоточенными параметрами (см. рис. 8,б). Для этой схемы можно записать

,

где .

Это напряжение определяется суммой прямой (падающей) и обратной (отраженной) волн, т.е.

,

откуда для отраженной волны имеет место соотношение

или для той же волны в произвольной точке линии с координатой , отсчитываемой от конца линии, с учетом запаздывания на время  -

.

Соответственно для отраженной волны тока можно записать

.

Эпюры распределения напряжения и тока вдоль линии для момента времени , когда отраженная волна прошла некоторое расстояние , представлены на рис. 9. В этот момент напряжение на конденсаторе

и ток через него

.

В качестве другого примера рассмотрим падение прямоугольной волны напряжения величиной   на включенный в конце линии индуктивный элемент (см. рис. 10,а). В соответствии с расчетной схемой на рис. 10,б для тока через катушку индуктивности и напряжения на ней соответственно можно записать

;

,

где

С учетом этого выражения для отраженных волн напряжения и тока в произвольной точке линии имеют вид

;

.

Эпюры распределения напряжения и тока вдоль линии для момента времени  приведены на рис. 11.


 

А также другие работы, которые могут Вас заинтересовать

61583. Графики и диаграммы. Наглядное представление о соотношении величин 518 KB
  Ход урока: Организационный этап 2 минуты Учитель: Здравствуйте. Проверка домашнего задания повторение ранее изученного материала 16 минут Учитель: На прошлом уроке вы научились наглядно определять изменения величин. Учитель: Верно.
61584. My family and I 141.03 KB
  Развивающие: продолжить развитие памяти, речевых умений, языковой догадки Воспитательные: развитие умений работать самостоятельно и в группе; воспитание уважительного отношения к старшим; формирование семейных ценностей у учащихся.
61585. Зрительного внимания у детей младшего дошкольного возраста 1.02 MB
  Выявить уровень развития зрительного внимания у детей младшего дошкольного возраста. Разработать и апробировать программу по развитию зрительного внимания у детей младшего дошкольного возраста.
61586. Полиграфическое искусство 25.56 KB
  Задачи: Обучающие: изучить полиграфическое дело познакомиться с такими понятиями как фирменный стиль полиграфия и подобное рассмотреть элементы рукописных книг познакомится с историей их изготовления познакомится с понятием единый стиль...
61587. Портрет мамы 19.68 KB
  Материалы для учителя: репродукции портретов наглядные пособия портрет лист бумаги формата А3 гуашь клей салфетки мольберт репродукции с портретами матерей известных художников...
61588. Экзотические птицы в витражной технике 17.82 KB
  Как вы все уже знаете тема нашей смены в лагере называется 438 попугаев. Каждому отряду присвоены имена различных видов попугаев. Затем мы вырежем всех нарисованных попугаев...
61589. Троекуров и Дубровский 20.23 KB
  Цели урока: Личностные: развитие представлений детей о нравственных и социальных проблемах, таких как верность дружбе, любовь, искренность, честь и отвага, постоянство, преданность, справедливость и несправедливость.
61590. Композиция с применением различных фактур. Зимний пейзаж 19.18 KB
  Цель урока: выполнить зимний пейзаж с применением разных материалов Задачи обучающие; изучить приемы работы с различными материалами познакомиться с понятием фактура развивающие...