40811

Магнитные нелинейные электрические цепи

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Для концентрации магнитного поля и придания ему желаемой конфигурации отдельные части электротехнических устройств выполняются из ферромагнитных материалов. Векторные величины характеризующие магнитное поле Наименование Обозначение Единицы измерения Определение Вектор магнитной индукции Тл тесла Векторная величина характеризующая силовое действие магнитного поля на ток по закону Ампера Вектор намагниченности А м Магнитный момент единицы объема вещества Вектор напряженности магнитного поля А м где Гн м магнитная постоянная Основные...

Русский

2013-10-22

57.18 KB

1 чел.

Лекция 32_Магнитные нелинейные электрические цепи.

При решении электротехнических задач все вещества в магнитном отношении делятся на две группы:

  1.  ферромагнитные (относительная магнитная проницаемость );
  2.  неферромагнитные (относительная магнитная проницаемость ).
  3.  

Для концентрации магнитного поля и придания ему желаемой конфигурации отдельные части электротехнических устройств выполняются из ферромагнитных материалов. Эти части называют магнитопроводами или сердечниками. Магнитный поток создается токами, протекающими по обмоткам электротехнических устройств, реже – постоянными магнитами. Совокупность устройств, содержащих ферромагнитные тела и образующих замкнутую цепь, вдоль которой замыкаются линии магнитной индукции, называют магнитной цепью.

Магнитное поле характеризуется тремя векторными величинами, которые приведены в табл. 1.

 Таблица 1. Векторные величины, характеризующие магнитное поле

Наименование

Обозначение

Единицы

измерения

Определение

Вектор магнитной индукции

Тл

(тесла)

Векторная величина, характеризующая силовое действие магнитного поля на ток по закону Ампера

Вектор намагниченности

А/м

Магнитный момент единицы объема вещества

Вектор напряженности магнитного поля

А/м

,

где Гн/м- магнитная постоянная

 Основные скалярные величины, используемые при расчете магнитных цепей, приведены в табл. 2.

Таблица 2. Основные скалярные величины, характеризующие магнитную цепь

Наименование

Обозначение

Единица

измерения

Определение

Магнитный поток

Вб

(вебер)

Поток вектора магнитной индукции через поперечное сечениемагнитопровода

Магнитодвижущая (намагничивающая) сила МДС (НС)

A

где -ток в обмотке,-число витков обмотки

Магнитное напряжение

А

Линейный интеграл от напряженности магнитного поля , где и -граничные точки участка магнитной цепи, для которого определяется

 

Характеристики ферромагнитных материалов

Свойства ферромагнитных материалов характеризуются зависимостью магнитной индукции от напряженности магнитного поля. При этом различают кривые намагничивания, представляющие собой однозначные зависимости , и гистерезисные петли - неоднозначные зависимости  (см. рис. 1).

 Основные понятия, характеризующие зависимости , приведены в табл. 3.

 Таблица 3. Основные понятия, характеризующие зависимости  

Понятие

Определение

Магнитный  гистерезис

Явление отставания изменения магнитной индукции B от изменения напряженности магнитного поля H

Статическая петля гистерезиса

Зависимость ,получаемая путем ряда повторных достаточно медленных изменений магнитной напряженности в пределах выбранного значения(см. кривые 1 на рис. 1).

Площадь статической петли гистерезиса характеризует собой потери на магнитный гистерезис за один период изменения магнитной напряженности

Начальная кривая намагничивания

Кривая намагничивания предварительно размагниченного ферромагнетика (B=0;H=0) при плавном изменении магнитной напряженности H. Представляет собой однозначную зависимостьи обычно близка к основной кривой намагничивания

Основная кривая намагничивания

Геометрическое место вершин петель магнитного гистерезиса (см. кривую 2 на рис. 1). Представляет собой однозначную зависимость

Предельная петля гистерезиса (предельный цикл)

Симметричная петля гистерезиса при максимально возможном насыщении

Коэрцитивная (задерживающая) сила

Напряженность магнитного поля Нс, необходимая для доведения магнитной индукции в предварительно намагниченном ферромагнетике до нуля. В справочной литературе обычно дается для предельной петли гистерезиса

Остаточная индукция

Значение индукции магнитного поля Вr  при равной нулю напряженности магнитного поля. В справочной литературе обычно дается для предельного цикла

 

Магнитомягкие и магнитотвердые материалы

Перемагничивание ферромагнитного материала связано с расходом энергии на этот процесс. Как уже указывалось, площадь петли гистерезиса характеризует энергию, выделяемую в единице объема ферромагнетика за один цикл перемагничивания. В зависимости от величины этих потерь и соответственно формы петли гистерезиса ферромагнитные материалы подразделяются на магнитомягкие и магнитотвердые. Первые характеризуются относительно узкой петлей гистерезиса и круто поднимающейся основной кривой намагничивания; вторые обладают большой площадью гистерезисной петли и полого поднимающейся основной кривой намагничивания.

Магнитомягкие материалы (электротехнические стали, железоникелевые сплавы, ферриты) определяют малые потери в сердечнике и применяются в устройствах, предназначенных для работы при переменных магнитных потоках (трансформаторы, электродвигатели и др.). Магнитотвердые материалы (углеродистые стали, вольфрамовые сплавы и др.) используются для изготовления постоянных магнитов.

 Статическая и дифференциальная магнитные проницаемости

Статическая магнитная проницаемость (в справочниках  начальная  и максимальная)

(1)

определяется по основной кривой намагничивания и в силу ее нелинейности не постоянна по величине (см.   рис. 2).

Величина  определяется тангенсом угла наклона касательной в начале кривой .

Кроме статической вводится понятие дифференциальной магнитной проницаемости, устанавливающей связь между бесконечно малыми приращениями индукции и напряженности


.     

(2)

 Кривые  и  имеют две общие точки: начальную и точку, соответствующую максимуму  (см. рис. 2).

При учете петли гистерезиса статическая магнитная проницаемость, определяемая согласно (1), теряет смысл. При этом значения  определяют по восходящей ветви петли при  и по нисходящей – при .

При переменном магнитном потоке вводится также понятие динамической магнитной проницаемости, определяемой соотношением, аналогичным (2), по динамической характеристике.

Основные законы магнитных цепей

В основе расчета магнитных цепей лежат два закона (см. табл. 4).

 Таблица 4.. Основные законы магнитной цепи

Наименование
закона

Аналитическое выражение закона

Формулировка закона

Закон (принцип) непрерывности магнитного потока

Поток вектора магнитной индукции через замкнутую поверхность равен нулю

Закон полного тока

Циркуляция вектора напряженности вдоль произвольного контура равна алгебраической сумме токов, охватываемых этим контуром

При анализе магнитных цепей и, в первую очередь, при их синтезе обычно используют следующие допущения:

- магнитная напряженность, соответственно магнитная индукция, во всех точках поперечного сечения магнитопровода одинакова

- потоки рассеяния отсутствуют (магнитный поток через любое сечение неразветвленной  части магнитопровода одинаков);

- сечение воздушного зазора равно сечению прилегающих участков магнитопровода.

Это позволяет использовать при расчетах законы Кирхгофа и  Ома для магнитных цепей (см. табл. 5), вытекающие из законов, сформулированных в табл. 4.

 Таблица 5. Законы Кирхгофа и Ома для магнитных цепей

Наименование закона

Аналитическое выражение  закона

Формулировка закона

Первый закон   Кирхгофа

Алгебраическая сумма магнитных потоков в узле магнитопровода равна нулю

Второй закон Кирхгофа

Алгебраическая сумма падений магнитного напряжения вдоль замкнутого контура равна алгебраической сумме МДС, действующих в контуре

Закон Ома

где

Падение магнитного напряжения на участке магнитопровода длиной  равно произведению магнитного потока и магнитного сопротивления  участка

Сформулированные законы и понятия магнитных цепей позволяют провести формальную аналогию между основными величинами и законами, соответствующими электрическим и магнитным цепям, которую иллюстрирует табл. 6.

 

Таблица 6. Аналогия величин и законов для электрических и магнитных цепей

Электрическая цепь

Магнитная цепь

Ток

Поток

ЭДС

МДС (НС)

Электрическое сопротивление

Магнитное сопротивление

Электрическое напряжение

Магнитное напряжение

Первый закон Кирхгофа:

Первый закон Кирхгофа:

Второй закон Кирхгофа:

Второй закон Кирхгофа:

Закон Ома:

Закон Ома:

 


 

А также другие работы, которые могут Вас заинтересовать

39811. Типовые законы управления и регуляторы 302 KB
  Регулятором является устройство анализирующее состояние объекта управления и вырабатывающее управляющее воздействие. В зависимости от поставленных задач и объекта управления выбирается структура и параметры регулятора. Законом управления регулирования называется описывающее регулятор дифференциальное уравнение.
39812. Устойчивость АСР 81 KB
  ПП зависит как от свойств системы так и от вида возмущающего воздействия. Устойчивость системы это ее способность переходить из исходного равновесного состояния в другое равновесное состояние после приложения внешнего воздействия и возвращаться к исходному состоянию равновесия после снятия этого воздействия. Если САР является линейной или линеаризованной то под влиянием воздействия xt изменение переменной yt во времени является решением дифференциального уравнения: Если в некоторый момент времени t1 воздействие xt с системы снять и...
39813. Анализ качества АСР 433.5 KB
  Анализ качества АСР. Системы построенные только по условиям физической реализации как правило не удовлетворяют показателям качества а реализация переходного процесса близко к идеальному связано с большими энергозатратами. Наиболее тяжёлым для АСР является единичный сигнал поэтому если АСР удовлетворяет заданным показателям качества при ступенчатом воздействии то она будет вести себя не хуже при остальных воздействиях. Методы оценки качества переходного процесса АСР.
39814. Автоматические системы прямого и непрямого регулирования 193.5 KB
  При нарушении установившегося режима вследствие уменьшения нагрузки двигателя произойдет увеличение частоты вращения приводного вала 4 и центробежной силы грузов 5. Регуляторы частоты вращения непрямого действия. При изменении частоты вращения муфта ЧЭ будет перемещать управляющий золотник который откроет доступ масла высокого давления в одну из полостей сервомотора. будет восстанавливаться заданная частота вращения.
39815. Двухпозиционное регулирование 51.5 KB
  Если объект представляется интегрирующим звеном с запаздыванием то диапазон колебаний регулируемой величины будет больше ширины петли гистерезиса 2а так как регулятор будет реагировать на фактическое изменение регулируемой величины с запаздыванием об. Дополнительное приращение амплитуды автоколебаний на счет запаздывания составит .4: Очевидно как и в случае интегрирующего объекта наличие запаздывания в апериодическом объекте приведет к увеличению диапазона колебаний регулируемой величины. Амплитуда колебаний будет тем больше чем больше...
39816. Нелинейные системы 71.5 KB
  Существует 2 группы НС: системы которые разрабатывались как линейные но изза несовершенства изготовления некоторых элементов или в процессе эксплуатации за счет износа элементы носят существенно нелинейный характер например появление нечувствительности. Идеальное поляризованное реле с зоной нечувствительности: [аа] зона нечувствительности Идеальное реле Нечувствительность [аа] зона нечувствительности Ограничение насыщение Ограничениенечувствительность Нессиметрия Реле идеальное поляризованное с петлей...
39817. Импульсные и цифровые автоматические системы управления 51.5 KB
  К импульсным АСУ относятся системы в состав которых входит хотя бы один элемент дискретного действия преобразующий непрерывный сигнал в последовательность импульсов или в ряд квантованных сигналов. Функциональную схему импульсной системы можно представить состоящей из дискретного элемента и непрерывной части НЧ. непрерывные системы дискретные системы xt непрерывная величина x k величина определена в отдельные промежутки времени производная от непрерывной величины  x k=x kx k1 разность первого порядка вторая...
39818. Развитие автоматизации судов 194.5 KB
  характеризуется внедрением автоматических систем управления регулирования контроля и защиты в объёме. На следующем этапе разрабатываются автоматические системы регулирования и дистанционного управления функционально связанными установками: котельной паротурбинной дизельэнергетической электроэнергетической. Автоматика первого поколения позволила решить главные задачи: повысить маневренность стабильность работы и экономичность судовых машин и систем освободить людей от утомительной обязанности ручной регулировки и управления. Резко...
39819. Классификация систем автоматического регулирования 381.5 KB
  Системы автоматического регулирования нашли широкое применение в многочисленных технологических процессах различных отраслей народного хозяйства. Следящие системы когда изменение выходного параметра Yt происходит по заранее неизвестному закону изменения задающего воздействия Xt. Во время работы системы регулируемая величина Yt должна изменяться в полном соответствии с задающим воздействием т. К таким системам относятся системы автоматического сопровождения цели например телескоп следит за движением небесного тела системы...