40823

Подэтапы первого этапа моделирования. Алгоритмизация моделей систем и их машинная реализация

Лекция

Информатика, кибернетика и программирование

Формы представления моделирующих алгоритмов Подэтапы первого этапа моделирования Рассмотрим более подробно основные подэтапы построения концептуальной модели МК системы и ее формализации см. формулировка цели и постановка задачи машинного моделирования системы. Дается четкая формулировка задачи цели и постановка исследования конкретной системы S и основное внимание уделяется таким вопросам как: а признание существования цели и необходимости машинного моделирования; б выбор методики решения задачи с учетом имеющихся ресурсов; в определение...

Русский

2013-10-22

183 KB

29 чел.

Лекция 12. Подэтапы первого этапа моделирования. Алгоритмизация моделей систем и их машинная реализация. Принципы построения моделирующих алгоритмов. Формы представления моделирующих алгоритмов

Подэтапы первого этапа моделирования

Рассмотрим более подробно основные подэтапы построения концептуальной модели МК системы и ее формализации (см. рис. 3.1)

1.1. формулировка цели и постановка задачи машинного моделирования системы. Дается четкая формулировка задачи цели и постановка исследования конкретной системы S и основное внимание уделяется таким вопросам, как: а) признание существования цели и необходимости машинного моделирования; б) выбор методики решения задачи с учетом имеющихся ресурсов; в) определение масштаба задачи и возможности разбиения ее на подзадачи. В процессе моделирования возможен пересмотр начальной постановки задачи в зависимости от цели моделирования и цели функционирования системы.

1.2. Анализ задачи моделирования системы. Анализ включает следующие вопросы: а) выбор критериев оценки эффективности процесса функционирования системы S; б) определение эндогенных и экзогенных переменных модели М; в) выбор возможных методов идентификации;
г) выполнение предварительного анализа содержания второго этапа алгоритмизации модели системы и ее машинной реализации; д) выполнение предварительного анализа содержания третьего этапа получения и интерпретации результатов моделирования системы.

1.3. Определение требований к исходной информации об объекте моделирования и организация ее сбора. После постановки задачи моделирования системы S определяются требования к информации, из которой получают качественные и количественные исходные данные, необходимые для решения этой задачи. На этом подэтапе проводится:
а) выбор необходимой информации о системе
S и внешней среде Е;
б) подготовка априорных данных; в) анализ имеющихся экспериментальных данных; г) выбор методов и средств предварительной обработки информации о системе.

1.4. Выдвижение гипотез и принятие предположений. Гипотезы при построении модели системы S служат для заполнения «пробелов» в понимании задачи исследователем. Выдвигаются также гипотезы относительно возможных результатов моделирования системы S, справедливость которых проверяется при проведении машинного эксперимента. Предположения предусматривают, что некоторые данные неизвестны или их нельзя получить. Предположения могут выдвигаться относительно известных данных, которые не отвечают требованиям решения поставленной задачи. Предположения дают возможность провести упрощения модели в соответствии с выбранным уровнем моделирования. При выдвижении гипотез и принятии предположений учитываются следующие факторы: а) объем имеющейся информации для решения задач; б) подзадачи, для которых информация недостаточна; в) ограничения на ресурсы времени для решения задач; г) ожидаемые результаты моделирования.

1.5. Определение параметров и переменных модели. Прежде чем перейти к описанию математической модели, необходимо определить параметры системы, входные и выходные переменные, воздействия внешней среды и оценить степени их влияния на процесс функционирования системы в целом. Описание каждого параметра и переменной должно даваться в следующей форме: а) определение и краткая характеристика; б) символ обозначения и единица измерения; в) диапазон изменений; г) место применения в модели.

1.6. Установление основного содержания модели. На этом подэтапе определяется основное содержание модели и выбирается метод построения модели системы, которые разрабатываются на основе принятых гипотез и предположений. При этом учитываются следующие особенности:
а) формулировка цели и постановка задачи моделирования системы;
б) структура системы
S и алгоритмы ее поведения, воздействия внешней среды Е; в) возможные методы и средства решения задачи моделирования.

1.7. Обоснование критериев оценки эффективности системы. Для оценки качества процесса функционирования моделируемой системы необходимо определить совокупность критериев оценки эффективности как функцию параметров и переменных системы. Эта функция представляет собой поверхность отклика в исследуемой области изменения параметров и переменных и позволяет определить реакцию системы.

1.8. Определение процедур аппроксимации. Для аппроксимации реальных процессов, протекающих в системе S, обычно используются три вида процедур: а) детерминированная; б) вероятностная; в) определение средних значений.

При детерминированной процедуре результаты моделирования однозначно определяются по данной совокупности входных воздействий, параметров и переменных системы S. В этом случае отсутствуют случайные элементы, влияющие на результаты моделирования. Вероятностная (рандомизированная) процедура применяется в том случае, когда случайные элементы, включая воздействия внешней среды Е, влияют на характеристики процесса функционирования системы S и когда необходимо получить информацию о законах распределения выходных переменных. Процедура определения средних значений используется тогда, когда при моделировании системы интерес представляют средние значения выходных переменных при наличии случайных элементов.

1.9. Описание концептуальной модели системы. На этом подэтапе построения модели системы: а) описывается концептуальная модель МК в абстрактных терминах и понятиях; б) задается целевая функция; в) дается описание модели с использованием типовых математических схем;
г) принимаются окончательно гипотезы и предположения; д) обосновывается выбор процедуры аппроксимации реальных процессов при построении модели.

1.10. Проверка достоверности концептуальной модели. После того как концептуальная модель МК описана, необходимо проверить достоверность некоторых концепций модели, перед тем как перейти к следующему этапу моделирования системы S. Один из методов проверки модели МК: применение операций обратного перехода, позволяющих проанализировать модель, вернуться к принятым аппроксимациям и наконец, рассмотреть снова реальные процессы, протекающие в моделируемой системе. Проверка достоверности концептуальной модели МК  должна включать: а) проверку замысла модели; б) оценку достоверности исходной информации; в) рассмотрение постановки задачи моделирования; г) анализ принятых аппроксимаций; д) исследование гипотез и предположений.

1.11. Составление технической документации по первому этапу. В конце этапа построения концептуальной модели МК и ее формализации составляется технический отчет по этапу, который включает в себя:
а) подробную постановку задачи моделирования системы
S; б) анализ задачи моделирования системы; в) критерии оценки эффективности системы;
г) параметры и переменные модели системы; д) гипотезы и предположения, принятые при построении модели; е) описание модели в абстрактных терминах и понятиях; ж) описание ожидаемых результатов моделирования системы
S.

3.3. Алгоритмизация моделей систем и их машинная реализация

На втором этапе моделирования – этапе алгоритмизации модели и ее машинной реализации – математическая модель, сформированная на первом этапе, воплощается в конкретную машинную модель.

Принципы построения моделирующих алгоритмов

Процесс функционирования системы S можно рассматривать как последовательную смену ее состояний  в -мерном пространстве. Очевидно, что задачей моделирования процесса функционирования исследуемой системы S является построение функций z, на основе которых можно провести вычисление интересующих характеристик процесса функционирования системы. Для этого должны иметься соотношения, связывающие функции z с переменными, параметрами и временем, а также начальные условия  в момент времени .

Для детерминированной системы , в которой отсутствуют случайные факторы, состояние процесса в момент времени  может быть однозначно определено из соотношений математической модели по известным начальным условиям. Если шаг  достаточно мал, то таким путем можно получить приближенные значения z.

Для стохастической системы , т.е. системы, на которую оказывают воздействия случайные факторы, функция состояний процесса z в момент времени  и соотношения модели, определяют лишь распределение вероятностей для  в момент времени . В общем случае и начальные условия  могут быть случайными, задаваемыми соответствующим распределением вероятностей. При этом структура моделирующего алгоритма для стохастических систем соответствует детерминированной системе. Только вместо состояния  необходимо вычислять распределение вероятностей для возможных состояний.

Такой принцип построения моделирующих алгоритмов называется принципом . Это наиболее универсальный принцип, позволяющий определить последовательные состояния процесса функционирования системы S через заданные интервалы времени . Но с точки зрения затрат машинного времени он иногда оказывается неэкономичным.

При рассмотрении процессов функционирования некоторых систем можно обнаружить, что для них характерны два типа состояний: 1) особые, присущие процессу функционирования системы только в некоторые моменты времени (моменты поступления входных или управляющий воздействий, возмущений внешней среды и т.п.); 2) не особые, в которых процесс находится все остальное время. Особые состояния характерны еще и тем, что функции состояний  в эти моменты времени изменяются скачком, а между особыми состояниями изменение координат  происходит плавно и непрерывно или не происходит совсем. Таким образом, следя при моделировании системы S только за ее особыми состояниями в те моменты времени, когда эти состояния имеют место, можно получить информацию, необходимую для построения функции . Очевидно, для описанного типа систем могут быть построены моделирующие алгоритмы по "принципу особых состояний". Обозначим скачкообразное (релейное) изменение состояния z как , а «принцип особых состояний» – как принцип .

«Принцип » дает возможность для ряда систем существенно уменьшить затраты машинного времени на реализацию моделирующих алгоритмов по сравнению с «принципом ». Логика построения моделирующего алгоритма, реализующего «принцип », отличается от рассмотренной для «принципа » только тем, что включает в себя процедуру определения момента времени , соответствующего следующему особому состоянию системы S. Для исследования процесса функционирования больших систем рационально использование комбинированного принципа построения моделирующих алгоритмов, сочетающих в себе преимущества каждого из рассмотренных принципов.

Формы представления моделирующих алгоритмов

Удобной формой представления логической структуры моделей является схема. На различных этапах моделирования составляются обобщенные и детальные логические схемы моделирующих алгоритмов, а также схемы программ.

Обобщенная (укрупненная) схема моделирующего алгоритма задает общий порядок действий при моделировании систем без каких-либо уточняющих деталей. Обобщенная схема показывает, что необходимо выполнить на очередном шаге моделирования.

Детальная схема моделирующего алгоритма содержит уточнения, отсутствующие в обобщенной схеме. Детальная схема показывает не только то, что следует выполнить на очередном шаге моделирования системы, но и как это выполнить.

Логическая схема моделирующего алгоритма представляет собой логическую структуру модели процесса функционирования системы S. Логическая схема указывает упорядоченную во времени последовательность логических операций, связанных с решением задачи моделирования.

Схема программы отображает порядок программной реализации моделирующего алгоритма с использованием конкретных математического обеспечения и алгоритмического языка.

Логическая схема алгоритма и схема программы могут быть выполнены как в укрупненной, так и в детальной форме. Наиболее употребительные в практике моделирования на ЭВМ символы показаны на рис. 3.3, где изображены основные, специфические и специальные символы процесса. К ним относятся: основной символ: а – процесс; специфические символы процесса: б – решение; в – подготовка; г – предопределенный процесс; д – ручная операция; специальные символы: е – соединитель; ж – терминатор.

Пример изображения схемы моделирующего алгоритма показан на рис. 3.3, з.

Обычно схема является наиболее удобной формой представления структуры моделирующих алгоритмов, например в виде граф-схемы (рис. 3.3, и). Здесь   начало,   конец,   вычисление,   формирование,   проверка условия,   счетчик, выдача результата, , где gобщее число операторов моделирующего алгоритма. В качестве пояснения к граф-схеме алгоритма в тексте дается раскрытие содержания операторов, что позволяет упростить представление алгоритма, но усложняет работу с ним.

а         б    з       и

в           г

д          ж

е

Рис. 3.3. Символы и схемы моделирующих алгоритмов

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Советов Б.Я. Моделирование систем : учеб. для вузов / Б.Я. Советов, С.А. Яковлев. М. : Высш. шк., 2001. 343 с.

2. Советов Б.Я. Моделирование систем : учеб. для вузов / Б.Я. Советов, С.А. Яковлев. 2-е изд. М.: Высшая школа, 1998. 319 с.

3. Тарасик В.П. Математическое моделирование технических систем: учеб. для вузов / В.П. Тарасик. М.: Наука, 1997. 600 с.

4. Введение в математическое моделирование: учеб. пособие для вузов/ под ред. П.В.Тарасова. М.: Интермет Инжиниринг, 2000. 200 с.

5. Ивченко Г.И. Математическая статистика: учебное пособие для втузов / Г.И. Ивченко, Ю.И. Медведев. М.: Высш. шк., 1984. 248 с.

6. Альянах И.Н. Моделирование вычислительных систем / И.Н. Альянах. Л.: Машиностроение, 1988. 233 с.

7. Шеннон Р. Имитационное моделирование систем – искусство и наука / Р. Шеннон. М.: Мир, 1978. 308 с.

6

H1

B2

П3

П4

Ф5

Р6

К7


 

А также другие работы, которые могут Вас заинтересовать

74537. Компьютерная сеть. Архитектура сети 22.52 KB
  Computer NetWork от net сеть и work работа совокупность компьютеров соединенных с помощью каналов связи и средств коммутации в единую систему для обмена сообщениями и доступа пользователей к программным техническим информационным и организационным ресурсам сети. Компьютерную сеть представляют как совокупность узлов компьютеров и сетевого оборудования и соединяющих их ветвей каналов связи. Компьютеры могут объединяться в сеть разными способами.
74538. Классификация компьютерных сетей 16.75 KB
  Корпоративная или региональная сеть создаётся крупными предприятиями корпорациями банками средствами массовой информации или территориями для обмена информацией между удалёнными абонентами. Глобальная сеть образуется в результате объединения сетей различного масштаба использования полного...
74540. HTTP. HyperText Transfer Protocol - протокол передачи гипертекста 17.41 KB
  HyperText Trnsfer Protocol протокол передачи гипертекста протокол прикладного уровня передачи данных. HTTP используется также в качестве транспорта для других протоколов прикладного уровня таких как SOP XMLRPCWebDV. Особенностью протокола HTTP является возможность указать в запросе и ответе способ представления одного и того же ресурса по различным параметрам: формату кодировке языку и т. Именно благодаря возможности указания способа кодирования сообщения клиент и сервер могут обмениваться двоичными данными хотя данный...
74541. WWW. World Wide Web 14.77 KB
  Годом рождения Всемирной паутины считается 1989 год. Именно в этом году Тим БернерсЛи предложил общий гипертекстовый проект который получил впоследствии название Всемирной паутины. Создатель паутины Тим БернесЛи работая в лаборатории физики элементарных частиц европейского центра ядерных исследований CERN В Женеве Швейцария совместно с партнером Робертом Кайо занимались проблемами применения идей гипертекста для построения информационной среды которая упростила бы обмен информацией между физиками. Итогом данной работы явился...