40829

ПЛАНИРОВАНИЕ МАШИННЫХ ЭКСПЕРИМЕНТОВ С МОДЕЛЯМИ СИСТЕМ

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Частные задачи планирования машинных экспериментов – уменьшение затрат машинного времени на моделирование увеличение точности и достоверности результатов моделирования проверка адекватности модели и т. План эксперимента определяет объем и порядок проведения вычислений на ЭВМ приемы накопления и статистической обработки результатов моделирования системы S. Таким образом при машинном моделировании рационально планировать и проектировать не только саму модель Мм системы S но и процесс ее использования т. При планировании эксперимента...

Русский

2013-10-22

223.5 KB

36 чел.

Лекция 21. ПЛАНИРОВАНИЕ МАШИННЫХ ЭКСПЕРИМЕНТОВ С МОДЕЛЯМИ СИСТЕМ. Методы теории планирования экспериментов. Машинный эксперимент. Основные понятия планирования экспериментов. Особенности экспериментальных факторных моделей

6. ПЛАНИРОВАНИЕ МАШИННЫХ ЭКСПЕРИМЕНТОВ С МОДЕЛЯМИ СИСТЕМ

6.1. Методы теории планирования экспериментов

Машинный эксперимент

Цель машинного эксперимента с моделью системы – получение информации о характеристиках процесса функционирования объекта.

Основная задача планирования машинных экспериментов - получение необходимой информации об исследуемой системе S при ограничениях на ресурсы (затраты машинного времени, памяти и т.п.). Частные задачи планирования машинных экспериментов – уменьшение затрат машинного времени на моделирование, увеличение точности и достоверности результатов моделирования, проверка адекватности модели и т. д.

План эксперимента определяет объем и порядок проведения вычислений на ЭВМ, приемы накопления и статистической обработки результатов моделирования системы S. Таким образом, при машинном моделировании рационально планировать и проектировать не только саму модель Мм, системы S, но и процесс ее использования, т. е. проведение с ней экспериментов с использованием инструментальной ЭВМ.

При планировании эксперимента важное значение имеют следующие моменты:

  1.  простота повторения условий эксперимента на ЭВМ с моделью Мм системы S;
  2.  возможность управления экспериментом с моделью Мм, включая его прерывание и возобновление;
  3.  легкость варьирования условий проведения эксперимента (воздействий внешней среды Е);
  4.  наличие корреляции между последовательностью точек в процессе моделирования;
  5.  трудности, связанные с определением интервала моделирования (0, T).

Преимуществами машинных экспериментов перед натурным являются:

  •  возможность полного воспроизведения условий эксперимента с моделью исследуемой системы S для сравнения двух и более альтернатив;
  •  простота прерывания и возобновления машинных экспериментов для анализа результатов и принятия решений об его дальнейшем ходе.

Недостатком машинных экспериментов является наличие корреляции в выходных последовательностях, т е. результаты одних наблюдений зависят от результатов одного или нескольких предыдущих, и поэтому в них содержится меньше информации, чем в независимых наблюдениях.

Основные понятия планирования экспериментов

Если цель эксперимента – изучение влияния переменной х на переменную у, то х – фактор, а у – реакция. В экспериментах с машинными моделями Мм системы S фактор является экзогенной или управляемой (входной) переменной, реакция – эндогенной (выходной) переменной. Каждый фактор xi, , может принимать в эксперименте одно из нескольких значений, называемых уровнями. Фиксированный набор уровней факторов определяет одно из возможных состояний рассматриваемой системы. Каждому фиксированному набору уровней факторов соответствует определенная точка в многомерном пространстве, называемом факторным пространством. Эксперименты не могут быть реализованы во всех точках факторного пространства, а реализуется лишь в точках, принадлежащих допустимой области, как, например, это показано для случая двух факторов x1 и x2 на рис. 6.1 (плоскость x10x2).

   у Поверхность реакции (х1,х2)

 у = +

   0    х1

    1  2      х2min

         0 G         

      х2   3            4 х2max

     х1min     х1max  

Рис. 6.1. Геометрическое представление поверхности реакции

Связь между уровнями факторов и реакцией (откликом) системы представим в виде соотношения

yl=l(x1, x2, …, xk), .

Функцию l, связывающую реакцию с факторами, называют функцией реакции, а геометрический образ, соответствующий функции реакции, – поверхностью реакции. Исследователю заранее не известен вид зависимостей l, , поэтому используют приближенные соотношения:

=l(x1, x2, …, xk), .

Зависимости l находятся по данным эксперимента.

При планировании экспериментов необходимо определить основные свойства факторов. Факторы при проведении экспериментов могут быть управляемыми и неуправляемыми, наблюдаемыми и ненаблюдаемыми, изучаемыми и неизучаемыми, количественными и качественными, фиксированными и случайными.

Фактор называется управляемым, если его уровни целенаправленно выбираются исследователем в процессе эксперимента.

Фактор называется наблюдаемым, если его значения наблюдаются и регистрируются. Обычно в машинном эксперименте наблюдаемые факторы совпадают с управляемыми, так как нерационально управлять фактором, не наблюдая его. Но неуправляемый фактор также можно наблюдать. Например, на этапе проектирования конкретной системы S нельзя управлять заданными воздействиями внешней среды Е, но можно наблюдать их в машинном эксперименте. Наблюдаемые неуправляемые факторы называются сопутствующими.

Фактор относится к изучаемым, если он включен в модель Мм для изучения свойств системы S, а не для вспомогательных целей, например для увеличения точности эксперимента.

Фактор будет количественным, если его значения – числовые величины, влияющие на реакцию, а в противном случае фактор называется качественным. Например, в модели системы, формализуемой в виде схемы массового обслуживания (Q-схемы), количественными факторами являются интенсивности входящих потоков заявок, интенсивности потоков обслуживания, емкости накопителей, количество обслуживающих каналов и т.д., а качественными факторами – дисциплины постановки в очередь, выбора из очереди, обслуживания заявок каналами и т.д. Качественным факторам в отличие от количественных соответствует условная порядковая шкала, а не числовая.

Фактор называется фиксированным, если в эксперименте исследуются все интересующие экспериментатора значения фактора, а если экспериментатор исследует только некоторую случайную выборку из совокупности интересующих значений факторов, то фактор называется случайным.

Основными требованиями, предъявляемыми к факторам, являются требование управляемости фактора и требование непосредственного воздействия на объект.

При планировании эксперимента обычно одновременно изменяются несколько факторов. Основные требования, которые предъявляются к совокупности факторов, – совместимость и независимость. Совместимость факторов означает, что все их комбинации осуществимы, а независимость соответствует возможности установления фактора на любом уровне независимо от уровней других.

При проведении машинного эксперимента с моделью Мм необходимо выявить влияние факторов, находящихся в функциональной связи с искомой характеристикой. Для этого необходимо:

  1.  отобрать факторы хi, , влияющие на искомую характеристику, и описать функциональную зависимость;
  2.  установить диапазон изменения факторов хiminхimax;
  3.  определить координаты точек факторного пространства {х1, x2, ..., хk}, в которых следует проводить эксперимент;
  4.  оценить необходимое число реализации и их порядок в эксперименте.

Существуют различные методы (модели) планирования.

Для экстремального планирования экспериментов наибольшее применение нашли модели в виде алгебраических полиномов. Предполагаем, что изучается влияние k количественных факторов хi, , на некоторую реакцию в отведенной для экспериментирования локальной области факторного пространства G, ограниченной хimin – хimax, (см. рис. 6.1 для случая k = 2). Допустим, что функцию реакции (х1, x2, ..., xk) можно с некоторой степенью точности представить в виде полинома степени d от k переменных, который содержит  коэффициентов.

.

Данный полином является частным случаем и применим для полного факторного эксперимента 2k, где k – количество факторов. Для оценки коэффициентов можно применить методы линейной регрессии.

Особенности экспериментальных факторных моделей

Наряду с теоретическими математическими моделями при функциональном проектировании технических систем широко применяются экспериментальные факторные математические модели.

Теоретические модели имеют то преимущество, что они непосредственно описывают физические свойства технической системы. Коэффициенты уравнений теоретических моделей представляют собой параметры элементов технической системы (внутренние параметры системы) или некоторые комбинации этих параметров, а зависимые переменные – фазовые координаты системы. Они позволяют осуществлять имитационное моделирование процессов функционирования технической системы во времени, детально изучать изменение фазовых координат в зависимости от внешних воздействий (возмущающих и управляющих), анализировать устойчивость системы, качество переходных процессов, эффективность функционирования в условиях случайных внешних воздействий, близких к реальным, т.е. оценивать ее функциональную работоспособность и выполнение технических требований к системе.

Но функциональные теоретические модели сложных технических объектов представляют собой системы нелинейных дифференциальных уравнений высокого порядка (обычно не ниже 30-го порядка). Однократное решение такой системы уравнений на самых современных ЭВМ требует значительных затрат машинного времени (десятки и даже сотни минут). Следует при этом учитывать, что задачи проектирования носят ярко выраженный оптимизационный характер. Целью функционального проектирования является выбор структуры на основе некоторого множества вариантов и определение оптимальных параметров технического объекта. Процедуры выбора структуры и оптимизационные алгоритмы требуют выполнения множества итераций, количество которых может достигать чисел второго и третьего порядков, причем на каждой итерации решается исходная система дифференциальных уравнений. Поэтому решение одной проектной задачи характеризуется огромными затратами машинного времени. Этим объясняется медленное внедрение методов функционального проектирования в конструкторских организациях. Вместе с тем без выполнения работ по функциональному проектированию невозможно обеспечить высокий технический уровень и конкурентоспособность создаваемых сложных технических объектов.

Затраты машинного времени можно значительно сократить, если на этапе оптимизации параметров использовать экспериментальную факторную математическую модель. Экспериментальные факторные модели, в отличие от теоретических, не используют физических законов, описывающих происходящие в объектах процессы, а представляют собой некоторые формальные зависимости выходных параметров от внутренних и внешних параметров объектов проектирования.

Экспериментальная факторная модель может быть построена на основе проведения экспериментов непосредственно на самом техническом объекте (физические эксперименты), либо вычислительных экспериментов на ЭВМ с теоретической моделью. При создании новых технических объектов физический эксперимент проводится на прототипах или аналогах, а иногда на макетных образцах. Однако физические эксперименты требуют огромных затрат материальных и временных ресурсов, поэтому их выполняют обычно в тех случаях, когда возникает необходимость поиска путей совершенствования существующих технических систем, когда сложность этих систем и условий их функционирования не позволяет надеяться на требуемую точность их математического описания теоретическими методами.

При функциональном проектировании факторные модели наиболее часто получают на основе вычислительных экспериментов на ЭВМ с теоретической моделью.

При построении экспериментальной факторной модели объект моделирования (проектируемая техническая система) представляется в виде "черного ящика", на вход которого подаются некоторые переменные Х и V, а на выходе можно наблюдать и регистрировать переменные Y (рис. 6.2). В число входных переменных Х и V входят внутренние и внешние параметры объекта проектирования, подлежащие оптимизации, а выходными переменными "черного ящика" являются выходные параметры объекта, характеризующие его эффективность и качество процессов функционирования, выбираемые в качестве критериев оптимальности. В процессе проведения эксперимента изменение переменных Х и V приводит к изменениям выходных переменных Y. Для построения факторной модели необходимо зарегистрировать эти изменения и осуществить необходимую их статистическую обработку для определения параметров модели.

Рис. 6.2. Схема объекта исследования при построении экспериментальной факторной модели

При проведении физического эксперимента переменными Х можно управлять, изменяя их величину по заданному закону. Переменные V – неуправляемые, принимающие случайные значения. При этом значения переменных Х и V можно контролировать и регистрировать с помощью соответствующих измерительных приборов. Кроме того, на объект воздействуют некоторые переменные Е, которые нельзя наблюдать и контролировать. Переменные  называют контролируемыми и управляемыми; переменные  – контролируемыми, но неуправляемыми, а переменные  – неконтролируемыми и неуправляемыми.

Переменные Х и V называют факторами. Факторы Х являются управляемыми и изменяются как детерминированные переменные, а факторы V неуправляемые, изменяемые во времени случайным образом, т.е. V представляют собой случайные процессы. Пространство контролируемых переменных – факторов Х и V – образует факторное пространство.

Выходная переменная Y представляет собой вектор зависимых переменных моделируемого объекта. Ее называют откликом (реакцией), а зависимость Y от факторов Х и Vфункцией отклика (функцией реакции). Геометрическое представление функции отклика называют поверхностью отклика (см. рис.6.1).

Переменная Y действует в процессе эксперимента бесконтрольно. Если предположить, что факторы Х и V стабилизированы во времени и сохраняют постоянные значения, то под влиянием переменных Е функция отклика Y может меняться как систематическим, так и случайным образом. В первом случае говорят о систематической помехе, а во втором – о случайной помехе. При этом полагают, что случайная помеха обладает вероятностными свойствами, не изменяемыми во времени.

Возникновение помех обусловлено ошибками методик проведения физических экспериментов, ошибками измерительных приборов, неконтролируемыми изменениями параметров и характеристик объекта и внешней среды, включая воздействия тех переменных, которые в принципе могли бы контролироваться экспериментатором, но не включены им в число исследуемых факторов (вследствие трудностей их измерения, по ошибке или незнанию). Помехи могут быть также обусловлены неточностью физического или математического моделирования объектов.

В вычислительных экспериментах объектом исследования является теоретическая математическая модель, на основе которой необходимо получить экспериментальную факторную модель. Для ее получения необходимо определить структуру и численные значения параметров модели.

Под структурой модели понимается вид математических соотношений между факторами Х, V и откликом Y. Параметры представляют собой коэффициенты уравнений факторной модели. Структуру модели обычно выбирают на основе априорной информации об объекте с учетом назначения и последующего использования модели. Задача определения параметров модели полностью формализована. Она решается методами регрессионного анализа. Экспериментальные факторные модели называют также регрессионными моделями.

Регрессионную модель можно представить выражением

,

где  – вектор параметров факторной модели.

Вид вектор-функции  определяется выбранной структурой модели и при выполнении регрессионного анализа считается заданным, а параметры В подлежат определению на основе результатов эксперимента, проводимого в условиях действия помехи Е, представляемой в виде аддитивной составляющей функции отклика Y (рис.6.2).

Эксперимент – это система операций, воздействий и (или) наблюдений, направленных на получение информации об объекте при исследовательских испытаниях.

Опыт – воспроизведение исследуемого явления в определенных условиях проведения эксперимента при возможности регистрации его результатов. Опыт – отдельная элементарная часть эксперимента.

Различают эксперименты пассивные и активные. Пассивным называется такой эксперимент, когда значениями факторов управлять нельзя, и они принимают случайные значения. Это характерно для многих технических объектов при проведении на них физических экспериментов. В таком эксперименте существуют только факторы V. В процессе эксперимента в определенные моменты времени измеряются значения факторов V и функций откликов Y. После проведения N опытов полученная информация обрабатывается статистическими методами, позволяющими определить параметры факторной модели. Такой подход к построению математической модели лежит в основе метода статистических испытаний (Монте-Карло).

Активным называется такой эксперимент, когда значениями факторов задаются и поддерживают их неизменными на заданных уровнях в каждом опыте в соответствии с планом эксперимента. Следовательно, в этом случае существуют только управляемые факторы Х. Однако в связи с тем, что в активном эксперименте также действует аддитивная помеха Е, реализации функций отклика Y представляют собой случайные величины, несмотря на то, что варьируемые факторы Х детерминированы. Поэтому здесь так же, как и в пассивном эксперименте, построение экспериментальной факторной модели требует статистической обработки получаемых результатов опытов.

Основные особенности экспериментальных факторных моделей следующие: они статистические; представляют собой сравнительно простые функциональные зависимости между оценками математических ожиданий выходных параметров объекта от его внутренних и внешних параметров; дают адекватное описание установленных зависимостей лишь в области факторного пространства, в которой реализован эксперимент. Статистическая регрессионная модель описывает поведение объекта в среднем, характеризуя его неслучайные свойства, которые в полной мере проявляются лишь при многократном повторении опытов в неизменных условиях.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

  1.  Советов Б.Я. Моделирование систем : учеб. для вузов / Б.Я. Советов,
    С.А. Яковлев. 3-е изд., перераб. и доп. М. : Высш. шк., 2001. 343 с.
  2.  Тарасик В.П. Математическое моделирование технических систем: учеб. для вузов / В.П. Тарасик. М.: Наука, 1997. 600 с.
  3.  Введение в математическое моделирование: учеб. пособие для вузов / под ред. П.В.Тарасова. М.: Интермет Инжиниринг, 2000. 200 с.
  4.  Советов Б.Я. Моделирование систем : учеб. для вузов / Б.Я. Советов,
    С.А. Яковлев. 2-е изд. М.: Высшая школа, 1998. 319 с.
  5.  Шеннон Р. Имитационное моделирование систем – искусство и наука /
    Р. Шеннон. М.: Мир, 1978. 308 с.
  6.  Максимей И.В. Имитация моделирования на ЭВМ / И.В. Максимей.
    М.: Радио и связь, 1988. 232 с.
  7.  Литвинов В.В. Методы построения имитационных систем / В.В. Литвинов Т.П.Марьянович. Киев Наукова Думка 1991. 120 с.
  8.  Шрайбер Т.Дж. Моделирование на GPSS / Т.Дж. Шрайбер.
    М.: Машиностроение, 1980.  592 с.
  9.  Технология системного моделирования / Е.Ф. Аврамчук [и др.]. М. Машиностроение 1988. 520 с.
  10.  Альянах И.Н. Моделирование вычислительных систем / И.Н. Альянах.
    Л.
    Машиностроение 1988. 233 с.
  11.  Балакирев В.С. Оптимальное управление процессами химической технологии / В.С. Балакирев В.М. Володин А.М. Цирлин. М. Химия 1978. 384 с.
  12.  Пакеты прикладных программ: Математическое моделирование / под ред. А.А. Самарского. М.: Наука, 1989. 128 с.
  13.  Системное обеспечение пакетов прикладных программ / под ред.
    А.А. Самарского. М.: Наука, 1990. 208 с.

8

Y

Объект исследования


 

А также другие работы, которые могут Вас заинтересовать

82911. Чи може музика передавати рух? 102 KB
  Мета: формувати в учнів уявлення про зображальні можливості музики в передачі руху. Повторення понять темп, ритм. Розвивати уявлення учнів. Виховувати любов до української народної пісні, етикетне поводження в школі. Обладнання: фортепіано, аудіозаписи, малюнки, презентація.
82912. Співучі труби. Мідні духові 33 KB
  Мета: поглибити знання про духові інструменти познайомити із мідною духовою групою особливостями звучання інструментів що входять до її складу; підвести учнів до усвідомлення значимості мідних духових інструментів для; розвивати музичну пам’’ять спостережливість...
82913. Причини виникнення пожежі – порушення правил протипожежної безпеки. Правила поведінки під час виникнення пожежі 46.5 KB
  Вогонь Правильно а звідки береться вогонь Відгадайте ще одну загадку. І мають душу щедру Хоч дерева сини Згоряючи до щенту Вогонь дають вони. Бесіда Отже сьогодні ми поговоримо про вогонь. Вогонь як ви знаєте може бути добрим другом для людини але може бути і страшним ворогом який забирає життя.
82914. Вода та її властивості 180 KB
  Давайте пригадаємо що таке природа На які групи вона поділяється Повітряземля і водаце природа Природа це я і ти це природа.вода Гостею нашого сьогоднішнього уроку буде вода а наша краплинка просто відірвалась від неї. Хто пригадає: який колір має вода смак запах Сьогодні краплинка хоче розповісти нам про властивості води.
82915. Лісові зони світу 33.5 KB
  Що побачили куди потрапили Чому це ліс Які ознаки лісу знаєте це великі ділянки землі на яких ростуть дерева розташовані близько одне від одного. Проте ліс – це не тільки дерева але й інші рослини і тварини які живуть серед дерев. Кожна група рослин утворює свій поверх ярус...
82916. Зелене диво Землі — рослини. Різноманітність живих організмів. Значення рослин у природі та житті людей 52.5 KB
  Мета: продовжити формувати поняття природа нежива і жива, уявлення про царства живої природи, значення рослин, різноманітність рослин на землі, про види рослин; продовжити виробляти навички дослідницької роботи та спостереження; розвивати логічне мислення, виховувати естетичні почуття.
82917. Як розмножуються тварини 265.5 KB
  Мета: ознайомити учнів з особливостями розмноження комах, риб, плазунів, земноводних, птахів, звірів; розвивати вміння спостерігати, аналізувати, порівнювати, робити висновки; виховувати пізнавальний інтерес до природи, бажання досліджувати, берегти і вивчати природу.
82918. Крымские горы, урок правоведения 65.5 KB
  Ознакомить учеников с географическим положением климатом растительным и животным миром Крымских гор; развивать познавательный интерес наблюдательность творческие навыки; воспитывать любовь и бережное отношение к природе патриотические и эстетические чувства; Оборудование: компьютер мультимедийный экран проектор мультимедийная презентация Крымские горы слайды с картой Крымских гор картины и фотографии с изображением изучаемых объектов демонстрационные материалы карточки для индивидуальной работы учебник для 4 класса...
82919. Басни И.А.Крылова 197.5 KB
  Урок сопровождается презентацией в которой отражается каждое из заданий Игра проверяет знания по басням: Ворона и Лисица Стрекоза и муравей Слон и Моська Кукушка и петух Мартышка и очки Зеркало и обезьяна Лебедь Щука и Рак Чиж и голубь Заяц на ловле Задачи урока: 1 закрепить знания учащихся о жанре басни и баснях...