40883

Класифікація електромагнітних явищ

Лекция

Физика

Рівняння магнітостатики: рівняння електростатики: . Рівняння магнітостатики має місце і там де . Звідси тобто звідки одержуємо рівняння Лапласа: з урахуванням заряду Пуасона: без.

Украинкский

2013-10-22

165 KB

1 чел.

Лекція 2

Класифікація електромагнітних явищ

Існують загальні підходи для спрощення:

  1.  Рівняння стаціонарного електромагнітного поля. Інколи можна розглядати постійні струми. При цьому в рівнянні (*) зникають похідні: Приклад використання: розрахунок наводок.
  2.  Розглянемо систему рівнянь у вакуумі, де . Рівняння магнітостатики: , рівняння електростатики: . Рівняння магнітостатики має місце і там, де .Рівняння Максвела нехвильове. Хвильовим воно стає в однорідному ізотропному середовищі. Звідси  тобто  звідки одержуємо рівняння Лапласа: (з урахуванням заряду), Пуасона: (без).
  3.  Квазістатичне наближення: , - розмір об’єкту. Тоді рівняння Максвела спрощуються. Розглянемо метал: там просторові переходи дуже швидко зростають (швидке затухання) тобто частинними похідними можна знехтувати.
  4.  Для монохроматичного лінійного поля можна використати метод комплексних амплітуд: позбавляємося частинних похідних тобто спрощуємо рівняння Максвела. Рівняння ЕМП в комплексній формі будемо розглядати лише для лінійних рівнянь, хоча існує метод і для нелінійних. Розглянемо рівняння:. Зробимо наступну заміну:, та аналогічно . Підставивши отримаємо: , прирівнявши коефіцієнти отримуємо: - ми спростили рівняння. Для того, щоб записати лінійне ДР у комплексних амплітудах, потрібно: а) замість дійсних змінних записати комплексні змінні; б) замість похідних по часу треба записати . Для того щоб знайти розв’язок рівняння, потрібно розв’язати спрощене рівняння, а потім знайти реальну частину від одного з виразів:  або . Часто рівняння записують з урахуванням того, що хвильовий вектор , де . Надалі ми будемо працювати в комплексних амплітудах.

Було б зручно звести рівняння Максвела до хвильових, але це можна зробити лише у деяких випадках, які і розглянемо.

Плоскі хвилі

Розглядатимемо плоскі хвилі в однорідному ізотропному середовищі.

Задача: знайти характеристики плоскої хвилі в такому середовищі.

Розв’язок: 

  1.  Обираємо декартову систему координат;
  2.  Рівняння Максвела: ; де . У плоскої хвилі на хвильовому фронті амплітуда і фаза однакова. Нехай хвиля розповсюджується в напрямку , то . Отримаємо  (з ). Розв’язок отриманог рівнянння осцилятора: .

Перейдемо до справжньої компоненти поля:  де - рівняння хвильового фронту (фаза ). Цей фронт розповсюджується зліва направо. Якби ми взяли замість компоненту , то одержали б - фронт, що рухається справа наліво.

Розглянемо .

. ; , тобто маємо дійсно праву трійку . Оскільки , то .

Таким чином у плоскій хвилі  і залежні величини: якщо одне з них задане, то друге визначається лише серидовищем (див. *). Це в СГСЕ, в інших системах по іншому. Наприклад, в СІ у вакуумі 377 (Ом) – опір вільного простору (хвильовий опір простору).

Затухання електромагнітних хвиль (ЕМХ).

Нехай вздовж осі розповсюджується ЕМХ: ; тут  . Розглянемо в середовищі, де , (найрозповсюдженіший випадок); . Тоді . З’явилася дійсна величина в експоненті. Тобто кожна хвиля затухає.


x

z


 

А также другие работы, которые могут Вас заинтересовать

17390. СОЦИОЛОГИЯ ЭМИЛЯ ДЮРКГЕЙМА 172.5 KB
  Лекция шестаяСОЦИОЛОГИЯ ЭМИЛЯ ДЮРКГЕЙМА Содержание Жизненный путь ученого Интеллектуальные истоки дюркгеймовской социологии Социологизм как философское обоснование социологии В поисках социальной солидарности: от теории разделения труда к теории ...
17391. СОЦИОЛОГИЯ ВИЛЬФРЕДО ПАРЕТО 130.5 KB
  Лекция седьмаяСОЦИОЛОГИЯ ВИЛЬФРЕДО ПАРЕТО Содержание Жизнь и научная деятельность Идейные истоки и особенности мировоззрения Социология как логикоэкспериментальная наука Логические и нелогические действия Осадки и производные Общество как система в
17392. Линия. Пространственные кривые лини 93 KB
  Линия. Пространственные кривые лини В начертательной геометрии кривую линию часто рассматривают как траекторию описанную движущейся точкой. Кривая линия может быть плоской или пространственной. Все точки плоской кривой принадлежат некоторой плоскости. Крив...
17393. Взаимное положение прямых в пространстве 60.5 KB
  Взаимное положение прямых в пространстве. Рассмотрим взаимное положение прямых в пространстве : параллельные прямые пересекающиеся и скрещивающиеся. Параллельные прямые. Параллельные прямые это прямые лежащие в одной плоскости и никогда ...
17394. Плоскость, линии и точки в плоскости 73.5 KB
  Плоскость линии и точки в плоскости. Проецирование элементов определяющих плоскость. При ортогональном проецировании любая плоскость может быть задана на чертеже проекциями трех точек не лежащих на одной прямой ; проекциями прямой и точки не лежащей на данно...
17395. ВЗАИМНОЕ ПОЛОЖЕНИЕ ПРЯМЫХ И ПЛОСКОСТЕЙ 64.5 KB
  ВЗАИМНОЕ ПОЛОЖЕНИЕ ПРЯМЫХ И ПЛОСКОСТЕЙ Прямая параллельная плоскости. Если прямая АВ параллельна прямой лежащей в некоторой плоскости то она параллельна этой плоскости. Если необходимо через заданную точку провести прямую параллельную заданной плоскости необ
17396. ПОВЕРХНОСТИ И ТЕЛА 70.5 KB
  ПОВЕРХНОСТИ И ТЕЛА Все поверхности можно подразделить на графические закон образования которых нам не известен и примером такой поверхности может быть топографическая поверхность Земли и геометрические закон которых известен. Часть пространства ограниченная
17397. ПОВЕРХНОСТИ И ТЕЛА. Циклические поверхности 74.5 KB
  ПОВЕРХНОСТИ И ТЕЛА Циклические поверхности Циклические поверхности могут быть образованы движением в пространстве какой либо окружности постоянного или переменного радиуса при перемещении ее центра по криволинейной направляющей а плоскость окружности ост
17398. Винтовые поверхности 53 KB
  Винтовые поверхности. Винтовой поверхностью называется поверхность которая описывается образующей при ее винтовом движении. Образующие могут быть как кривыми так и прямыми линиями. Прямые линии обычно называются винтовыми параллелями. Расстояние между винтов