40893

Лінії передач для інтегральних схем

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Складність розв’язання цієї задачі полягає в тому, що граничні умови тут – нерегулярні; не можна покласти, що на поверхні. Використовують наближені методи; зокрема конформних відображень.

Украинкский

2014-11-16

207 KB

1 чел.

Лекція 9

Лінії передач для інтегральних схем.

В інтегральній електроніці використовуються в основному плоскі лінії.

  1.  Симетрично – смушкова лінія (ССЛ): вона відкрита, тому має втрати.

  1.  Не симетрично – смушкова лінія (НСЛ):

  1.  Мікросмушкова лінія (microstrip line) – МСЛ. Тут ємність дуже велика, енергія сконцентрована. Підкладка з діелектрика . Лінія двоповерхова – це не дуже зручно.

  1.  Щілинна лінія (slot line). Вона є одноповерховою:

  1.  Компланарний хвильовід – все в одній площині.

Поля в несиметрично – смушковій лінії.

Складність розв’язання цієї задачі полягає в тому, що граничні умови тут – нерегулярні; не можна покласти, що на поверхні . Використовують наближені методи; зокрема конформних відображень.

Наближення: Існує Т – хвиля (нехтуємо випромінюванням). Використаємо симетрію задачі. Цікавимося випромінюванням на краю.

Треба розв’язати задачу: знайти розв’язок рівняння Лапласа у верхній площині з напівнескінченним розрізом. Використаємо метод конформних відображень: тут застосовується інтегральне конформне перетворення Кристофеля – Шварца.

Розглянемо ламану лінію, що в точці а змінює напрямок на кут :

. Якщо є два зломи, то , де , , . В нашій конкретній задачі ламану можна подати у вигляді:

Кут відраховується проти годинникової стрілки від наступного напрямку до попереднього. , , перенесемо точки: .

Проінтегрувавши отримаємо шукане перетворення: . Константи  та  визначаються з умов: , отже . Умовою  ми не можемо скористатися, бо одержимо . Використаємо фізичні міркування:

Загальний вид відображення ; бо область інваріанта відносно зсуву вздовж ОХ (трансляційна симетрія).

Зрозуміло, у нашій задачі область при . При перетворення набуває вигляду: . Порівнюючи з , . Отже шукане перетворення: .

Для того, щоб знайти розв’язок у верхній півплощині, необхідно перетворити її в конденсатор, використовуючи перетворення зворотне до : . Тоді відображення, що перетворить вихідну область () (край конденсатора) у конденсатор (), має вигляд: .

Тепер необхідно розв’язати рівняння у плоскому конденсаторі та скористатись зворотнім перетворенням: , . .

Таким чином: .

Запишемо рівняння еквіпотенційних поверхонь: .

ЕПП  переходить в .

ЕПП  переходить в .

Таким чином, отримаємо таку картину еквіпотенціальних поверхонь:

Тепер знайдемо електричні силові лінії. Ці лінії перпендикулярні ЕПП, однак ми знайдемо їх в аналітичний спосіб. Очевидно, в () такі силові лінії, як на малюнку. Знайдемо образ цих ліній у просторі (). Наприклад, ,. Отримаємо картину ЕП в ():

Часто важливо знайти напруженість поля в певній точці: .

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  


 

А также другие работы, которые могут Вас заинтересовать

23029. Задачі ідентифікації лінійних алгебраїчних, інтегральних та функціональних перетворень 487 KB
  Постановка та план розвязання задачі. Далі розвязки ідентифікаційних задач 16.3 отримаємо із розвязку допоміжних задач 16. Розглянемо розвязок задачі 16.
23030. Проблеми моделювання динаміки систем з розподіленими параметрами 1.64 MB
  4 і модель ця адекватно описує динаміку фізикотехнічного обєкту процесу то можна ставити і розвязувати: Прямі задачі динаміки визначення векторфункції стану ys при заданих зовнішньодинамічних факторах ; Обернені задачі динаміки визначення векторфункцій які б згідно певного критерію дозволяли отримувати задану картину змін векторфункції ys або наближатися до неї.4 побудовані апробовані практикою а відповідні математичні теорії дозволяють розвязувати як прямі так і обернені задачі динаміки таких систем....
23031. Побудова матричної функції Гріна та інтегральної моделі динаміки систем з розподіленими параметрами в необмеженій просторово-часовій області 249.5 KB
  Функція Гріна динаміки систем з розподіленими параметрами в необмежених просторовочасових областях.10 а також з того що шукана матрична функція Gss' є розвязком рівняння 1.1 де визначені вище матричні диференціальні оператори та матрична функція одиничного джерела. А це означає що матрична функція відповідає фізичному змісту задачі а розвязок її дійсно представляється співвідношенням 1.
23032. Дискретний варіант побудови та дослідження загального розв’язку задачі моделювання динаміки систем з розподіленими параметрами 586 KB
  Псевдообернені матриці та проблеми побудови загального розвязку системи лінійних алгебраїчних рівнянь. З цією метою виділимо в матриці C r лінійно незалежних стовпців. Враховуючи що всякий стовпець матриці C може бути розкладений за системою векторів як за базисом матрицю C подамо у вигляді де вектор коефіцієнтів розкладу стовпця матриці С за базисом .10 ранг основної матриці дорівнює рангу розширеної.
23033. Моделювання дискретизованих початково-крайових 244 KB
  Постановка задачі та проблеми її розвязання.4 в розвязку 1.23 вектора векторфункції та матричної функції проблему розвязання задачі 4.6 в залежності від співвідношень між та може мати точний розвязок або визначене згідно 4.
23034. Моделювання неперервної початково-крайової задачі динаміки систем з розподіленими параметрами 355.5 KB
  Моделювання неперервної початковокрайової задачі динаміки систем з розподіленими параметрами 5. Постановка задачі та проблеми її розвязання. Розглянутий вище варіант постановки та розвязання проблеми моделювання початковокрайової задачі динаміки системи 1.5 Для того щоб методику розвязання дискретизованої задачі моделювання динаміки розглядуваної системи розвинуту в рамках лекції 3 успішно узагальнену далі лекція 4 на задачі моделювання дискретизованих початковокрайових умов неперервними функціями та поширити на задачу 5.
23035. Моделювання динамічних систем з розподіленими параметрами при наявності спостережень за ними 563 KB
  Відомі функції невідомі 6. Відомі функції невідомі 6. Відомі функції невідомі 6. Відомі функції невідомі 6.
23036. Задачі оптимізації структури лінійних динамічних систем з розподіленими параметрами 289.5 KB
  Задачі оптимізації структури лінійних динамічних систем з розподіленими параметрами 7. Розглянуті вище задачі моделювання початковокрайових умов див. Розглянемо варіант розвязання задачі моделювання коли розвязок її знаходиться шляхом обернення системи інтегральних рівнянь 7.14 помилки розвязання задачі моделювання 7.
23037. Дослідження та оптимізація структури дискретизованих динамічних систем 335.5 KB
  вказувалося що структура матриці С та векторів визначається вибором точок розміщення спостерігачів та керувачів системи проблеми оптимального розміщення яких будуть розвязані якщо будуть знайдені явні залежності матриці від елементів множин координат спостерігачів та координат керувачів. Будуть побудовані аналітичні залежності елементів матриці від довільного елемента множини та елемента множини а також формули диференціювання матриці по цих елементах. В процесі розвязання цієї проблеми будуть побудовані формули...