40897

Повільні хвилі

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Непрямолінійний розповсюджувач меандр спіраль Для багатьох електричних приладів необхідно отримати хвилю, що рухається зі швидкістю . Це зокрема стосується приладів, у яких відбувається передача енергії та інформації від хвилі іншим носіям.

Украинкский

2013-10-22

183.5 KB

0 чел.

Лекція 12

Повільні хвилі.

Для багатьох електричних приладів необхідно отримати хвилю, що рухається зі швидкістю . Це зокрема стосується приладів, у яких відбувається передача енергії та інформації від хвилі іншим носіям. Однак, згідно Ейнштейну, хвилі у вакуумі рухаються зі швидкістю світла, а будь-який інший носій (наприклад ) не може рухатися зі швидкістю .

  1.  Для створення уповільнених хвиль використовуються різні спеціальні хвильоводи:

Передача енергії від електричного потоку до ЕМ – поля називається ефектом Вавілова-Черенкова. Він виникає, коли швидкості електричного потоку та ЕМ – хвилі рівні.

  1.  . Метод передачі енергії: в діелектрику – вузький канал, куди запускають потік електронів.

  1.  Метод уповільнення: використовуються дифракційні ефекти.

Розглянемо прямокутний хвильовід з діелектрику:

Розповсюдження хвилі в бруску з діелектриком – за рахунок повного відбиття. Це – відкриті діелектричні хвильоводи (бо немає металевих стінок) або світловоди. На практиці використовуються круглі волокна (див. мал.) – fiber-glass.

Досягнення полягає в тому, що немає металу, яким обумовлена більшість втрат. Ця лінія також є уповільнюючою, бо:

  1.  
  2.  непрямолінійне розповсюдження хвилі, .

Хвиля існує не лише в хвильоводі, але й в  металі, бо хвильовід – відкритий.

Висновки Ейнштейна про те, що фотон у вакуумі рухається зі швидкістю , стосується вільного нескінченного простору, тому за межами хвильовода неподалік від нього поле є, і воно рухається зі швидкістю ; проте на  поля бути не може через експоненційне спадання поля.

З інших міркувань: хвиля не виходить з діелектрику, тому, що всередині швидкість  тобто імпульс ; і згідно з законом збереження імпульсу хвиля не може вийти з хвильоводу, бо за його межами імпульс має бути . Єдина умова виходу хвилі з хвильоводу – тоді, коли швидкість хвилі в хвильоводі стане рівною с (імпульси всередині і зовні – однакові).

Розрахуємо поле у fiber-glass: шукаємо хвилю Е або ТМ.

Розв’язки обох рівнянь (для зовнішнього та внутрішнього середовища) необхідно прирівняти при  (на границі): ; .

В циліндричній СК: . Запишемо рівняння для скалярної функції: . Розглянемо симетричні розв’язки: . .

.

Якщо область містить точку ; то розв’язок зручно брати у вигляді функцій Ханкеля, бо саме в базисі  є функція, що експоненційно прямує до нуля при .

- йде в  з хвильовода, - йде з  в хвильовід.

Отже, розв’язок треба брати у вигляді: , , тобто .

Граничні умови для похідних . Врахуємо  для  або ;  циліндрична функція. Тоді . Таким чином з граничних умов одержали: . Це – лінійна однорідна система відносно А та В. Вона має розв’язок за умови : . .

Розв’язок позначається  (перший індекс в - нуль, бо брали ).

Знайдемо сталу розповсюдження: , тоді одержуємо: .

Тут також існує критична довжина хвилі, яка відповідає : . Однак існує більш жорстка умова – умова того, щоб хвиля не пішла з хвильоводу: : . Умовою визначення критичної хвилі у відкритих системах є не рівність сталої розповсюдження , а більш жорстка умова . Це – умова невитікання хвилі з хвильоводу. Фізично вона є законом збереження імпульсу (коли імпульси зовні і всередині співпадають, з’являється можливість для витікання хвилі.

Приблизна картина розподілу  та  у хвильоводі та зовні показана на малюнку:

Ця картина - для  (, 1 – номер кореня).

Непрямолінійний розповсюджувач

меандр

спіраль

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

+

-

-

+

EMBED Equation.3  

EMBED Equation.3  


 

А также другие работы, которые могут Вас заинтересовать

40137. Производная функции одной переменной. Определение, ее геометрический смысл, простейшие правила вычисления производной (производная от функции, умноженной на константу, от суммы функций, от произведения функций, частного и степени). Производная сложной фун 140 KB
  Производная функции одной переменной. Определение ее геометрический смысл простейшие правила вычисления производной производная от функции умноженной на константу от суммы функций от произведения функций частного и степени. Производная сложной функции. Если предел  и конечен то его значение называют производной функции f в т.
40138. Дифференцирование функций многих переменных: производная по направлению, частные производные, дифференциал, Производная от сложных функций, градиент, направления убывания, геометрический смысл градиента 141 KB
  Если то функция называется дифференцируемой по x в точке x0 y0. 1 2  для  0  0:  x yDz  Ox0 y0 {x0 y0}: zx y  O Значение lim не должно зависеть от способа стремления точки x y к точке x0 y0: на плоскости для функции нескольких переменных При разных  получаем разные значения lim  lim не . Непрерывность Функция zx y называется непрерывной в точке x0 y0 если: 1. Если функция z = zx y дифференцируема в точке по совокупности аргументов то она непрерывна в этой точке.
40139. Определенный интеграл и его геометрический смысл (задача о площади криволинейной трапеции). Приближенное вычисление определенных интегралов, формулы трапеций и Симпсона 165.5 KB
  Пусть функция у = fx определена на отрезке [а b]. Обозначим через На каждом из сегментов выберем произвольные точки и составим интегральную сумму: Обозначим – диаметр разбиения если  конечный не зависящий от способа разбиения отрезка [а b] и выбора точек то его значение называется определенным интегралом от функции fx его обозначение а функция fx называется интегрируемой по Риману на [а b]. Если функция fx интегрируема на [а b] то она ограничена на этом сегменте. ДОКВО Если функция fx не ограничена на [а b] то...
40140. Приведение задач линейного программирования к каноническому виду. Методы искусственного базиса 66 KB
  Основная теорема ЛП: если задача ЛП имеет решение то целевая функция достигает экстремального значения хотя бы в одной из угловых точек многоугольника решений. Таким образом с теоретической точки зрения решение задачи ЛП выглядит следующим образом: можно найти все угловые точки многоугольника решения высчитать в них значение ЦФ выбрать наибольшее наименьшее. процесс нахождения угловых точек сравним по трудности с решением исходной задачи. В этом заключается основная идея СМ которая предполагает: 1 уметь находить первоначальное базисное...
40141. ОПТИМАЛЬНЫЕ ЛИНЕЙНЫЕ ФИЛЬТРЫ СИГНАЛОВ НА ФОНЕ ПОМЕХ 1.62 MB
  Смысл слова выделение сигнала совпадает с понятием оценки сигнала. Пусть имеется сумма сигнала и шума: 6.1 Требуется чтобы оценка сигнала являющаяся откликом на воздействие t рис.
40142. ОПТИМАЛЬНОЕ ОБНАРУЖЕНИЕ ДЕТЕРМИНИРОВАННЫХ СИГНАЛОВ 231.5 KB
  3 Тема №3 Основы теории обнаружения и различения сигналов ОПТИМАЛЬНОЕ ОБНАРУЖЕНИЕ ДЕТЕРМИНИРОВАННЫХ СИГНАЛОВ Обнаружение сигналов как статистическая задача Пусть на вход обнаружителя поступает сумма сигнала st и шума nt представляющая собой случайный непрерывный процесс 7. Дискретизация проводится в соответствии с теоремой Котельникова: для дискретизации аналогового сигнала без потерь информации частота отсчетов должна быть в...
40143. ОПТИМАЛЬНОЕ ОБНАРУЖЕНИЕ КВАЗИДЕТЕРМИНИРОВАННЫХ СИГНАЛОВ 241 KB
  Для этого потребуется определить распределение вероятностей достаточной статистики у поступающей на пороговое устройство а именно распределение вероятностей корреляционного интеграла y при отсутствии  = 0 и наличии  = 1 сигнала st на входе обнаружителя.5 рассчитываются характеристики оптимального обнаружения детерминированного сигнала в белом шуме.1 сплошными линиями показаны характеристики оптимального обнаружения детерминированного сигнала в белом шуме. Характеристики обнаружения позволяют определить минимальную энергию...
40144. ОПТИМАЛЬНОЕ РАЗЛИЧЕНИЕ ДЕТЕРМИНИРОВАННЫХ СИГНАЛОВ 360 KB
  5 Рош а б ОПТИМАЛЬНОЕ РАЗЛИЧЕНИЕ ДЕТЕРМИНИРОВАННЫХ СИГНАЛОВ Различение двух детерминированных сигналов. Постановка задачи и правило принятия решения Задача различения сигналов находит широкое распространение в дискретной радиосвязи когда передача символа 1 связана с излучением сигнала s1t а передача символа 0 связана с излучением другого сигнала s2t отличающегося от s1t хотя бы одним какимнибудь своим параметром. Поэтому решение о том какой из сигналов принимается может осуществляться с ошибкой. Отсюда возникает задача...
40145. ОПТИМАЛЬНАЯ ОЦЕНКА ПАРАМЕТРОВ СИГНАЛА 683 KB
  Очевидно пользователю для извлечения из полученного сигнала сведений следует определить значения параметров сигнала несущих требуемую информацию. Устройство предназначенное для измерения параметров сигнала будем называть измерителем. Кроме того на измерения может существенно влиять наличие у сигнала не только полезных несущих необходимую информацию параметров но и параметров не известных потребителю и не содержащих интересных для него сведений.