40900

Відкриті резонатори

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Тут не можна використовувати геометричні наближення потрібно розв’язувати рівняння Максвела. Розв’яжемо рівняння Максвела для сферичного діелектричного резонатора. Щоб отримати саме хвильове рівняння де була б ще й похідна необхідно зробити заміну: . Розв’яжемо простіше рівняння для та методом відокремлених змінних: тоді .

Украинкский

2013-10-22

118.5 KB

0 чел.

Лекція 15

Відкриті резонатори.

Це резонатори на основі відкритих ліній передач. Вони мають електромагнітний контакт з відкритим простором. Звичайно використовуються в лазерах сферичні діелектричні резонатори. Нас цікавлять шари діелектрика для лінії . Тут не можна використовувати геометричні наближення, потрібно розв’язувати рівняння Максвела.

Розв’яжемо рівняння Максвела для сферичного діелектричного резонатора. Тут потрібно використати ССК:

, .

В сферичній СК не можна перейти до скалярних рівнянь звичайним чином. Використовують заміну:, , , , , .

Це – ТМ  чи Е – заміна, оскільки . Аналогічно можна зробити Н – заміну:

Ми будемо використовувати Е – заміну, перейшовши до потенціалу , в результаті одержимо: .

Щоб отримати саме хвильове рівняння, де була б ще й похідна , необхідно зробити заміну: . Потенціали  та  називають потенціалами Дебаю. Вони мають методичне значення. Розв’яжемо простіше рівняння для  та  - методом відокремлених змінних:  тоді .

Рівняння для  - це рівняння Лежандра. Його розв’язки – поліноми Лежандра. Рівняння для  можна звести до рівняння Бесселя заміною . Це рівняння для сферичних функцій Бесселя (або функцій Бесселя напівцілого вигляду). Стандартний вигляд рівняння: , його розв’язки :

.

Таким чином розв’язки:

.

Щоб використати граничні умови, необхідно виразити ,  через .

,

отримаємо два рівняння для А та В, причому А і В будуть відмінні від нуля лише тоді, коли  системи рівна нулю. Користуючись виразами для  та , отримаємо:  з цього рівняння отримаємо . Для : . Поле має вигляд:

Таким чином, поля тут ідуть таким же чином, як і в кільці, по якому біжить струм.

Це була строга, точна теорія резонаторів сферичної форми. Проте, їх важко виготовляти, вони незручні у використанні. Використовують:

Розрахувати таку систему неможливо, бо немає регулярних граничних умов (наприклад при ).

Можна вважати, що резонансна частота є проміжним значенням між резонансною частотою у вписаній та описаній кулі.

Відмінність формування граничних умов:

- регулярна гранична умова

- нерегулярна гранична умова

Коли є металева поверхня, можна записати . Це так звані електричні стінки.

+           -

МП

струми

                             -


 

А также другие работы, которые могут Вас заинтересовать

19008. Общие свойства одномерного движения. Интегрирование уравнения одномерного движения. Период финитного движения в произвольном потенциале 301 KB
  Лекция 6. Общие свойства одномерного движения. Интегрирование уравнения одномерного движения. Период финитного движения в произвольном потенциале Одномерным называется движение системы с одной степенью свободы: . в самом общем виде функция Лагранжа выглядит так:
19009. Движение двух взаимодействующих частиц. Приведение к задаче о движении в цен-тральном поле. Общие закономерности движения в центральном поле 268 KB
  Лекция 7. Движение двух взаимодействующих частиц. Приведение к задаче о движении в центральном поле. Общие закономерности движения в центральном поле Полное аналитическое решение в общем виде допускает чрезвычайно важная задача о движении системы из взаимодействую
19010. Движение в центральном поле. Финитное и инфинитное движение. Падение на центр 828 KB
  Лекция 8. Движение в центральном поле. Финитное и инфинитное движение. Падение на центр Выберем начло координат в центре поля См. рисунок. В начальный момент времени частица находилась в какото точке имела импульс и следовательно имела относительно центра поля м...
19011. Общие закономерности движения частицы в кулоновском поле притяжения. Эффективный потенциал. Минимальное и максимальное расстояние до центра поля 1.28 MB
  Лекция 9. Общие закономерности движения частицы в кулоновском поле притяжения. Эффективный потенциал. Минимальное и максимальное расстояние до центра поля Рассмотрим движение частицы массы во внешнем поле ; 1 когда Это соответствует полю притяж...
19012. Движение в кулоновском поле притяжения (задача Кеплера). Классификация орбит при финитном и инфинитном движении 281 KB
  Лекция 10. Движение в кулоновском поле притяжения задача Кеплера. Классификация орбит при финитном и инфинитном движении В предыдущей лекции мы выяснили при каких значениях энергии движение будет инфинитным финитным а так же определили условия при которых траект
19013. Кинематика и динамика упругого столкновения частиц. Переход в Ц-систему. Импульсные диаграммы. Связь углов рассеяния в Л- и Ц-системах 1.06 MB
  Лекция 11. Кинематика и динамика упругого столкновения частиц. Переход в Цсистему. Импульсные диаграммы. Связь углов рассеяния в Л и Цсистемах Столкновение двух частиц называется упругим если оно не сопровождается изменением их внутреннего состояния в том числе не ...
19014. Дифференциальное сечение рассеяния частиц. Формула Резерфорда 2.55 MB
  Лекция 12. Дифференциальное сечение рассеяния частиц. Формула Резерфорда Для изучения характера взаимодействия частиц друг с другом обычно проводятся эксперименты по рассеянию целого пучка одинаковых частиц которые падают из бесконечности с одинаковой начальной с...
19015. Малые одномерные колебания (свободные и вынужденные). Вынужденные колебания под действием произвольной силы 2.55 MB
  Лекция 13. Малые одномерные колебания свободные и вынужденные. Вынужденные колебания под действием произвольной силы. Вынужденные колебания под действием гармонической силы. Резонанс. Затухающие колебания Распространенным движением в природе являются колебания те
19016. Малые колебания системы со многими степенями свободы. Собственные частоты и нормальные координаты 459.5 KB
  Лекция 14. Малые колебания системы со многими степенями свободы. Собственные частоты и нормальные координаты Рассмотрим случай малых колебаний системы частиц имеющей степеней свободы. Самый общий вид функции Лагранжа такой системы таков: 1 2 Устойч