40911

Вимірювання потужностей НВЧ

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

НВЧ Струмів майже немає Струми максимальні Подаємо НВЧ, тобто болометр перегрівається, баланс порушується. Для встановлення балансу опір збільшуємо так, щоб загальна потужність: . Для точності використовують . Інколи потрібно зменшити падаючу потужність. Для цього використовують атенюатори (поглинаюча пластина, що вставляється в хвилевід).

Украинкский

2013-10-22

138.5 KB

0 чел.

Лекція 26

Вимірювання потужностей НВЧ.

НП – детектори не можуть використовуватись для вимірювання, бо з часом вони самі змінюються, тобто не існує однакових НП – детекторів. Найбільш точні методи – калориметричні, але вони розраховані на великі потужності (>1Вт). Використовують термістори і болометри:

 - НП-бусинка. Це все поміщують у термостат. Але це знову ж дає мало переваг у порівнянні з НП-детекторами.

Тоді можна записати:

, звідки маємо .

Перевага бусинки - в електроніці. Намалюємо вимірювальний міст:  - з’являється тому, що НВЧ нагріває по поверхні, а батарейка - по об’єму.

Спочатку міст балансується опором  тобто гальванометр нічого не показує.

Подаємо НВЧ, тобто болометр перегрівається, баланс порушується. Для встановлення балансу  опір  збільшуємо так, щоб загальна потужність: . Для точності використовують . Інколи потрібно зменшити падаючу потужність. Для цього використовують атенюатори (поглинаюча пластина, що вставляється в хвилевід). Вони можуть зменшувати потужність на 30-40 дБ. Існують прецизійні атенюатори, точність 0,01 дБ:

, а потужність, що поглинається, . А залежність кута можна визначити точно.

Існують направлені відгалужувачі:

У випадку, зображеному справа, потужність йде в одному напрямку:

Лівий відгалужувач реагує лише на відбиту хвилю, правий – на падаючу. Компаратор автоматично рахує Г.

У мікроелектроніці використовують мікросмужкові шлейфові відгалуджувачі.

Існують розподілені розгалджувачі – (для верхньої смуги пропускання) – тут випромінює щілина.

Записуємо за принципом Гюйгенса: , проінтегрувавши одержимо:

, коефіцієнт направленості - можливо таке, що . При - це направлений відгалужувач. Однак, розміри цього відгалужувача пропорційні довжині хвилі, що дуже багато. Тому використовують відгалужувач Бете:

Виявляється, що зв’язок цього хвильоводу з трубами існує по ЕМП, і фаза зв’язків по ЕП та МП – різна. Розглянуто  зв’язок по ЕП, тепер по МП:

- тобто хвиля піде лише у ліву трубу: від діелектричного зв’язку все “+”, від магнітного “+” та “-“, тобто в правій трубці . Хвиля піде у ліву трубу.

НВЧ

Струмів майже немає

Струми максимальні

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

Компаратор

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

+

+

+

+

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

+

+

EMBED Equation.3  

EMBED Equation.3  


 

А также другие работы, которые могут Вас заинтересовать

10480. Насичені вуглеводні. Номенклатура 201 KB
  Дата: Тема: Урок залік з теми Насичені вуглеводні. Номенклатура. Тип уроку: урок застосування знань умінь та навичок. Навчальна мета: Конкретизувати та поглибити знання учнів з теми Насичені вуглеводніâ. Навчити учнів застосовувати загальні зако...
10481. Семінар з теми Ненасичені вуглеводні етиленового ряду 177 KB
  Дата: Тема: Семінар з теми Ненасичені вуглеводні етиленового ряду Навчальна мета: Конкретизувати та поглибити знання учнів з теми Ненасичені вуглеводні етиленового рядуâ; Навчити учнів застосовувати загальні закономірності для пояснення властивосте
10482. Ненасичені вуглеводні. Етилен як представник ненасичених вуглеводнів. Склад молекули, електронна та структурна формули, sp2-гібридизація електронів, σ- та π-звязки 63 KB
  Тема: Ненасичені вуглеводні. Етилен як представник ненасичених вуглеводнів. Склад молекули електронна та структурна формули sp2гібридизація електронів σ та πзвязки. Навчальна мета: сформувати поняття про новий гомологічний ряд алкени; ознайомити з новим видом гі...
10483. Ненасичені вуглеводні. Етилен як представник ненасичених вуглеводнів. Склад молекули, електронні та структурні формули, кратні звязки 64.5 KB
  Тема: Ненасичені вуглеводні. Етилен як представник ненасичених вуглеводнів. Склад молекули електронні та структурні формули кратні звязки. Гомологи етилену. Ізомерія карбонового скелету і положення кратного звязку. Номенклатура алкенів. Мета: навчальна: сформуват...
10484. Одержання кисню в лабораторії. Реакції розкладу. Поняття про каталізатори 56 KB
  Тема: Одержання кисню в лабораторії. Реакції розкладу. Поняття про каталізатори. Навчальна мета: розглянути основні лабораторні способи добування кисню дати уявлення про реакцію розкладу каталізатор. Виховна мета: виховувати в учнів самостійність вміння виконува
10485. Оксисен. Кисень, склад його молекули, фізичні властивості 53 KB
  Тема: Оксисен. Кисень склад його молекули фізичні властивості. Мета: навчальна: повторити класифікацію речовин за складом. Ознайомити з хімічним елементом Оксигеном. Вивчити склад фізичні властивості способи добування і збирання фізіологічну дію кисню. Сформувати
10486. Періодична система хімічних елементів Д. І. Менделєєва. Поняття про періоди і групи. Структура періодичної системи 54.5 KB
  Тема: Періодична система хімічних елементів Д. І. Менделєєва. Поняття про періоди і групи. Структура періодичної системи. Мета: навчальна: сформувати знання про структуру періодичної системи малі та великі періоди групи елементів та поділ їх на підгрупи: головні та по
10488. Измерение направленных и поляризационных параметров рупорных антенн 116 KB
  Исследуемые рупорные антенны с присоединенными к ним волноводными детекторными секциями по очереди можно устанавливать в антенно-поворотном устройстве. АПУ позволяет -поворачивать и измерять угол поворота рупорной антенны как в горизонтальной плоскости