40920

Фарадеївський вентиль і циркулятор

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Ці прилади працюють на великих потужностях. Вхідна та вихідна щілини повернуті на одна відносно іншої. Всередині – ферит, навколо – електромагнітна котушка. Підбираємо параметри так, щоб хвиля змінювала поляризаційний кут на після проходження

Украинкский

2013-10-22

66 KB

0 чел.

Лекція 35

Фарадеївський вентиль і циркулятор.

Ці прилади працюють на великих потужностях. Вхідна та вихідна щілини повернуті на  одна відносно іншої. Всередині – ферит, навколо – електромагнітна котушка. Підбираємо параметри так, щоб хвиля змінювала поляризаційний кут на  після проходження .

Якщо пропустити хвилю з кінця на вхід, то буде:

і хвиля не піде , вона піде в 3, оскільки тут буде зв’язок по МП, таке поле може вийти в 3, а в 1 – не може.

Отримуємо циркулятор , . Якщо замість 2 поставити заглушку, то отримаємо вентиль, бо хвиля піде .

Мікросмужкові лінії з феритом.

Замість діелектрику беремо , .

Площина поляризація задана металевими смужками і не може обертатися. Можна змінювати . Є також три варіанти намагнічення [1], [2], [3].

  •  .
  •  , оскільки в цьому напрямку змінне , і не може взаємодіяти.
  •   (нас цікавить ).


ЕП

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

  •  

 

А также другие работы, которые могут Вас заинтересовать

36209. Задачи дискретной оптимизации. Основные точные методы дискретной оптимизации: поиск с возвратом, динамическое программирование, метод ветвей и границ. Приближённые методы дискретной оптимизации: жадный алгоритм, метод локальных вариаций 126.5 KB
  Тогда в терминах ЦЧЛП задача о рюкзаке может быть сформулирована так: найти максимум линейной функции при ограничениях хj  0 . Найти кратчайший маршрут коммивояжера бродячего торговца начинающийся и заканчивающийся в заданном городе и проходящий через все города. Воспользовавшись им при k = n – 1 1 можно найти Q х0 – оптимальное значение критерия эффективности. Зная х1 можно найти – оптимальное управление на 2й стадии и т.
36210. Языки описания выбора. Процедуры выбора при критериальном описании: скалярно-оптимизационный механизм выбора, человеко-машинные процедуры, мажоритарные схемы 73.5 KB
  Процедуры выбора при критериальном описании: скалярнооптимизационный механизм выбора человекомашинные процедуры мажоритарные схемы. Как любая теория теория выбора начинается с языка описания. К настоящему времени сложилось три основных языка описания выбора: критериальный язык; язык бинарных отношений; язык функций выбора.
36211. Классы численных методов построения множеств неулучшаемых решений. Основные теоремы для поточечных методов и алгоритма последовательного выбора 31.5 KB
  Процедуры первой группы осуществляют поочередный поиск отдельных неулучшаемых точек как решений вспомогательных скалярных задач. В них на каждой итерации получается целое множество “неплохих†точек которое на последующих шагах постепенно улучшается. Генератор на каждой итерации порождает набор точек zk а ФВ осуществляет отбор в некотором смысле лучших из них: Генератор множеств точек zk Функция выбора С Для организации выбора необходимо произвести парные сравнения исходных вариантов и отбросить те из...
36212. Эффективные и слабо-эффективные решения. Поточечные методы поиска слабо-эффективных решений и оценок. Линейная свёртка, теорема Карлина. Логическая свёртка, теорема Гермейера. Геометрический смысл теорем Карлина и Гермейера 79.5 KB
  Поточечные методы поиска слабоэффективных решений и оценок. Решения или оценки называются эффективными слабоэффективными если они неулучшаемы по отношению Парето Слейтера. Поиск слабоэффективных решений или оценок поточечными методами базируется на основной теореме 2.
36213. Метод наименьших квадратов (МНК). Теорема Гаусса-Маркова. Анализ уравнения регрессии посредством коэффициента детерминации и остаточной дисперсии. МНК-прогноз 112.5 KB
  МНКпрогноз. Согласно методу наименьших квадратов МНК эти оценки находят из условия минимума функции Qb = где уi – наблюдаемое значение выходного параметра в iм эксперименте.1 МНКоценок и представляет прежде всего теоретический интерес.
36214. Понятие плана эксперимента. Оптимизационные свойства планов экспериментов. Полный факторный план и его свойства 46 KB
  Оптимизационные свойства планов экспериментов. Полный факторный план и его свойства. Одной из главных задач планирования экспериментов является выбор множества экспериментальных точек в некотором смысле оптимальных.
36215. Классификация математических моделей. Критерии качества моделей. Примеры моделей 66.5 KB
  Примеры моделей Суть моделирования состоит в замене исходного объекта упрощенной копией – математической моделью ММ и дальнейшем изучении модели с помощью вычислительнологических алгоритмов реализуемых на компьютерах. При исследовании любой системы методами математического моделирования возможно наличие нескольких альтернативных вариантов модели. Поэтому процесс построения наилучшего как правило компромиссного варианта модели достаточно сложен. Системный подход предполагает наличие следующих этапов создания модели.
36216. Простейший поток и его свойства. Модель простейшего потока 61 KB
  Модель простейшего потока. Свойства ординарного потока. Тогда для любого случайного потока имеем равенство как сумма вероятностей полной группы событий. Для ординарного же потока имеем.
36217. Уравнения Колмогорова. Моделирование многоканальной СМО с ограничением на длину очереди 75.5 KB
  Моделирование многоканальной СМО с ограничением на длину очереди Марковские процессы уравнения Колмогорова Случайный процесс t называется Марковским если его будущее не зависит от прошлого а определяется настоящим т. Примерами Марковских процессов являются при определенных предположениях процессы функционирования СМО.1 СМО может иметь установившийся стационарный режим. Для построения модели стационарного режима СМО положим все производные в системе 11 равными нулю.