41130

Основные задачи в области электротехники

Лекция

Производство и промышленные технологии

Определение связи между токами напряжениями параметрами заданной цепи и теми величинами которые определяют работу рассматриваемой установки например: к. падение напряжения величина тока к. Электрической цепью называется совокупность устройств предназначенных для прохождения электрического тока. Различают источники напряжения и источники тока.

Русский

2013-10-22

188.5 KB

4 чел.

Лекция №1.

1. Цели и задачи курса «Электротехника».

Курс «Электротехника» является специальным курсом, дающим теоретическую базу для понимания физических процессов в элементах и устройствах автоматики и системах управления.

Цель курса: изучение с качественной и количественной стороны установившихся режимов и переходных процессов в электрических цепях; ознакомление с современными инженерными методами анализа и синтеза электрических цепей, которые являются схемами замещения различных физических устройств и приборов.

Основные задачи в области электротехники:

  1.  Расчеты и анализы цепей, т.е. определение связи между токами, напряжениями, параметрами заданной цепи и теми величинами, которые определяют работу рассматриваемой установки (например: к.п.д., падение напряжения, величина тока к.з. и т.д.). Также сюда входят и задачи математического описания цепей (геометрия и топология цепей, их матрицы); методы решения и анализа систем уравнений электрических цепей.
  2.  Принцип работы и общие свойства важнейших электротехнических устройств и элементов электрической цепи. Например, вопрос о согласовании приемника к источникам питания для получения максимальной мощности; теория резонанса.
  3.  Синтез электрических цепей.

Задачи синтеза заключаются в разработке методов такого выбора схемы соединения элементов цепи и такого подбора параметров этих элементов, чтобы полученная цепь обладала заданными характеристиками. Например, такой простой вопрос, как выбор параметров треугольника, эквивалентного заданной звезде, по существу относится к задаче синтеза.

2. Элементы электрических цепей.

Электрической цепью называется совокупность устройств, предназначенных для прохождения электрического тока. Электромагнитные процессы в электрических цепях описываются при помощи понятий «ток» и «напряжение».

В общем случае электрическая цепь состоит из источников и приемников электрической энергии и промежуточных звеньев, связывающих источники с приемниками.

Источники электрической энергии – гальванические элементы, аккумуляторы, термоэлементы, генераторы и другие устройства, в которых происходит процесс преобразования химической, тепловой, механической или другого вида энергии в электрическую.

Приемниками (нагрузкой) электрической энергии служат электрические двигатели, электронагревательные приборы и другие устройства, в которых электрическая энергия превращается в световую, тепловую, механическую и другие виды.

Под элементами в теории электрических цепей подразумеваются обычно не физически существующие составные части электротехнических устройств, а их идеализированные модели, которым теоретически приписываются определенные электрические и магнитные свойства, так что они в совокупности приближенно отображают явления, происходящие в реальных устройствах.

В электрических цепях различают активные и пассивные элементы.

Активные элементы – это источники электрической энергии. Различают источники напряжения и источники тока.

Пассивные элементы – это сопротивления, индуктивности, емкости.

По наличию данных элементов различают соответственно активные и пассивные цепи.

3. Положительные направления тока и напряжения.

Электрический ток в общем случае представляет собой движения электрических зарядов отрицательного и положительного знаков в разные стороны.

Численно ток определяется как придел отношения количества электричества, переносимого заряженными частицами сквозь рассматриваемое поперечное сечение проводника за некоторый промежуток времени, к этому времени, при условии, что данный промежуток времени стремится к нулю:

где  g - количество электричества, прошедшее через рассматриваемое сечение проводника за время t.

Количество электричества (заряд) измеряется в Кулонах [K], промежуток времени в секундах [сек], а единицей измерения тока служит Ампер [A].

Электрическому току приписывают направление.

За положительное направление тока принимают направление перемещения положительных зарядов от  точки высшего потенциала к точке меньшего потенциала.

Направление тока характеризуется знаком тока. Понятия положительный или отрицательный ток имеют смысл, если сравнивать направление тока в проводнике с некоторым заранее выбранным направлением – так называемым положительным направлением тока.

Положительное направление тока выбирается произвольно и указывается стрелкой.

Рассмотрим пассивный участок электрической цепи с выбранным положительным направлением тока:

При протекании тока от точки 1 к точке 2 подразумевается, что потенциал точки 1 выше потенциала точки 2.

Под напряжением на данном участке подразумевается разность электрических потенциалов точек 1 и 2.

Единица измерения напряжения Вольт [B].

При условии, что 1 (потенциал) больше 2 U12 = 1 - 2  будет положительным.

Порядок индексов при напряжении означают его выбранное положительное направление.

Чаще всего положительное направление напряжения выбирают совпадающим с положительным направлением тока и указывают стрелкой.

4. Источник напряжения и источник тока.

В теории электрических цепей используют понятия идеальные источники электрической энергии: источник напряжения и источник тока.

Им приписывают следующие свойства:

Источник напряжения представляет собой активный элемент с двумя зажимами, напряжение на котором не зависит от тока, проходящего через источник

Рис.2. Идеальный источник напряжения и

его вольтамперная характеристика(BAX).

Предполагается, что внутри идеального источника напряжения пассивные сопротивление, индуктивность и емкость отсутствуют и, следовательно, прохождение тока не вызывает падения напряжения.

Упорядоченное перемещение положительных зарядов в источнике напряжения от меньшего потенциала к большему возможно работа сторонних сил, которые присущи источнику.

Величина работы, производимой данными сторонними силами по перемещению единицы положительного заряда от отрицательного полюса источника напряжения к положительному по полюсу, называется электродвижущей силой (э.д.с.) источника и обозначается e(t).

На рис.2(а) указано направление напряжения на зажимах идеального источника, которое всегда равно э.д.с. источника по величине и противоположно ей по направлению.

Идеальный источник напряжения называют еще источником бесконечной мощности. Это - теоретическое понятие. Величина тока в пассивной цепи зависит от параметров этой цепи и e(t). Если зажимы идеального источника напряжения замкнуть накоротко, то ток цепи должен быть теоретически равен бесконечности. В действительности при замыкании зажимов источника ток имеет конечное значение, так как реальный источник обладает внутренним сопротивлением.

Обычно внутренние параметры источника конечной мощности незначительны по сравнению с параметрами внешней цепи и в не которых случаях (по условию задачи) могут вообще не учитываться. Внутреннее сопротивление источника э.д.с.(r0) на схемах замещения изображается последовательно соединенным с самим источником.

Рис.3. Источник напряжения конечной мощности.

Источник тока представляет собой активный элемент, ток которого не зависит от напряжения на его зажимах.

Рис.4. Идеальный источник тока и его вольтамперная характеристика.

Предполагается, что внутренне сопротивление идеального источника тока равно бесконечности, и поэтому параметры внешней цепи, от которых зависит напряжение на зажимах источника тока, не влияют на ток источника.

При увеличении напряжения внешней цепи, присоединенной к источнику тока, напряжение на его зажимах, и следовательно, мощность возрастают. Поэтому идеальный источник тока теоретически так же рассматривается как источник бесконечной мощности.

Источник тока конечной мощности изображен на рис.5.  g0 – внутренняя проводимость источника. Она характеризует внутренние параметры источника и ограничивает мощность, отдаваемую в цепь.

Рис.5. Источник тока конечной мощности.

Часто при решении задач методом эквивалентных преобразований возникает необходимость заменить реальный источник напряжения эквивалентным источником тока или наоборот. Преобразование осуществляется по схеме и формулам рис.6.

             (1)

Рис.6. Преобразования источников конечной мощности.


5.
Сопротивление.

Сопротивлением называется идеализированный элемент цепи в котором происходит необратимый процесс преобразования электрической энергии в тепловую.

Кроме того, данный термин применяется для количественной оценки величины, равной отношению напряжения на данном элементе к току, проходящему через него:

[Ом]  (2)

Формула 2 выражает закон Ома.

Сопротивление всегда положительно.

Величина обратная сопротивлению носит название проводимости:

[См]  (3)

Рис.7. Графическое изображение сопротивления

с выбранными положительными направлениями тока и напряжения.

Мгновенная мощность, поступающая в сопротивление равна:

Pr = Ui = i2r = U2q  (4)

Параметр r в общем случае зависит от тока i (например, вследствие нагревания проводника током).

Вольтамперная характеристика (зависимость напряжения на сопротивлении от тока) носит нелинейный характер.

Рис.8. BAX сопротивления: а – нелинейная; б – линейная.

Если сопротивление не зависит от тока, то имеет место прямая пропорциональность, выражающая закон Ома. В этом случае сопротивление называется линейным.

6. Индуктивность.

Индуктивностью называется идеализированный элемент электрической цепи, приближающейся по свойствам к индуктивной катушке, в котором накапливается энергия магнитного поля.

При этом термин «индуктивность» и его обозначение L применяется как для обозначения самого элемента цепи, так и для количественной оценки отношения потокосцепления самоиндукции к току в данном элементе:

[Гн]  (5)

Индуктивность всегда положительна, так как потокосцепления и ток имеют одинаковые знаки.

В общем случае индуктивность зависит от тока и является нелинейной.

Если зависимость(i) линейная, то индуктивность – величина постоянная.

Рис.9. Зависимость потокосцепления от тока:

а - нелинейная, б – линейная.

Рис.10. Графическое изображение индуктивности.

 (6)

eL - электродвижущая сила самоиндукции,  которая по закону Ленца противодействует изменению потокосцепления, что учитывается знаком « - ».

Если индуктивность L  величина постоянная (не зависит от тока), то

=  (7)

Напряжение на индуктивности определяется:

 (8)

Ток на индуктивности:

 (9)

Формулы (8) и (9) выражают закон Ома дифференциальной и интегральной форме для индуктивности.

Мгновенная мощность, поступающая в индуктивность равна:

 (10)

Мощность индуктивности связана с процессом нарастания или убывания энергии магнитного поля.

  1.  
    Емкость.

Емкостью называется идеализированный элемент электрической цепи приближенно заменяющий конденсатор, в котором накапливается энергия электрического поля.

При этом данный термин применяется как для обозначения самого элемента, так и для количественной оценки отношения заряда к напряжению на этом элементе:

[Ф]  (11)

Емкость всегда положительна, так как заряд и напряжение имеют одинаковый знак.

В общем случае зависимость заряда от напряжения носит нелинейный характер и, следовательно, параметр С зависит от напряжения.

Если зависимость заряда от напряжения линейная, емкость C – величина постоянная.

Рис.11. Зависимость электрического заряда от напряжения,

а – нелинейная, б – линейная.

Ток емкости равен производной электрического заряда по времени:

(12)

Формула (12) выражает закон Ома для емкости.

Напряжение на емкости:

 (13)

Условное графическое изображение емкости указано на рис.11. Там же даны положительные направления тока и напряжения.

Рис.12. Условное обозначение емкости.

Мгновенная мощность, поступающая в емкость, равна:

 (14)

Мощность емкости связана с процессом накопления или убыли электрического заряда в емкости. Когда заряд положительный и возрастает ток положительный и в емкость поступает электрическая энергия из внешней цепи. Когда заряд положителен, но убывает, т.е. ток отрицателен, энергия, ранее накопленная в электрическом поле емкости, возвращается во внешнюю цепь.

 


 

А также другие работы, которые могут Вас заинтересовать

39639. Совершенствование системы теплоснабжения административного здания №1693 ОАО «Сбербанка России». Перевод работы индивидуального теплового пункта на автономный режим с использованием теплонасосной установки 1.83 MB
  3 Расчет горизонтального кожухотрубчатого конденсатора. Расчёт патрубков.1 Параметры теплоносителя Отопление и вентиляция Горячие водоснабжение Теплоноситель вода Вода Температура 0С 1500700С по ТУ81 ДС 1100700С расчетные параметры 600С Давление в подающем трубопроводе МПа 060 Давление в обратном трубопроводе МПа 045 Тепловые нагрузки приведены в таблицы 2 Таблица 1.3 Расчет горизонтального кожухотрубного конденсатора 2.
39640. ОРГАНИЗАЦИЯ КОРПОРАТИВНОЙ СЕТИ НА ОСНОВЕ ТЕХНОЛОГИИ VDI 12.64 MB
  3 представлен гипервизор VMware ESXi который распределяет все ресурсы физического сервера на нужды виртуальных машин а точнее на нужды их гостевых операционных систем.3 – Сравнение стандартной платформы и платформы с гипервизором В виртуальную машину устанавливается стандартный набор драйверов производства VMware который встроен в ESXi. После этого ВМ будет совместима с любым сервером на котором установлен VMware ESXi. Наиболее популярные решения: Microsoft AppV Citrix XenApp VMware ThinApp.
39641. Технологический процесс изготовления крышки дифференциала грузовой лебедки крана МКРС300 914.5 KB
  С постоянным развитием машиностроения возрастает спрос на продукцию, выпускаемую заводом ОАО «Балткран», в том числе и грузовой лебедки, в которую входит дифференциал, а в месте с этим возрастают требования качества и безопасности изделия.
39642. РАЗРАБОТКА ДИСТАНЦИОННОЙ СИСТЕМЫ УПРАВЛЕНИЯ УЧЕБНЫМ РОБОТОМ 2.7 MB
  Робототехника – прикладная наука, занимающаяся разработкой автоматизированных технических систем и являющаяся важнейшей технической основой интенсификации производства. Робототехника опирается на такие дисциплины, как электроника, механика, информатика
39643. Преобразователь звуковой частоты 251 KB
  Мастер производственного участка обеспечивает работника нужным инвентарем и обеспечивает безопасные условия труда. Из этого следует что все ресурсы потребляются в производстве тремя способами: пропорционально произведенной продукции – сырье энергия заработная плата при сдельной системе оплаты труда и т.; равномерно в течение времени – амортизационные отчисления заработная плата при повременной системе оплаты труда и т.; ситуационно например по мере износа оборудования – материалы и заработная плата ремонтного персонала при...
39644. СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ПОЛЕТОМ 425.42 KB
  ЛАБОРАТОРНАЯ РАБОТА №1 €œИзучение и исследование свойств самолета как объекта управления в продольном движении€. Цель работы Целью работы является изучение и исследование свойств самолета как объекта управления в продольном движении методом математического моделирования а также изучение характера возмущенного движения самолета на управляющие и возмущающие воздействия. Экспериментальное исследование свойств самолета в продольном движении. Исходным материалом для подготовки к лабораторной работе являются значения коэффициентов...
39646. Разработка системы моделирования движения «свободного самолета», с целью внедрения в учебный процесс программы, созданной на основе полученных результатов 6.79 MB
  Методика определения передаточных функций самолета 24 1. Техническое задание на разработку системы моделирования движения свободного самолета 26 2. Построение переходных процессов модели полного продольного движения самолета по приращению управляющих воздействий а так же по приращению импульсных управляющих воздействий. Построение переходных процессов модели короткопериодического движения самолета по приращению управляющих воздействий 36 2.