41136

Математические выражения для термодинамической работы и теплоты

Лекция

Математика и математический анализ

Математические выражения для термодинамической работы и теплоты. Вычисление работы и теплоты. Вычисление теплоты. В качестве силы которая обеспечивает передачу теплоты от одних тел к другим Клаузиус предложил рассматривать температуру а в качестве обобщенной координаты некоторый параметр состояния который называется энтропия.

Русский

2013-10-22

97 KB

1 чел.

Лекция 2

2. Математические выражения для термодинамической работы и теплоты. 2.1. Вычисление работы и теплоты.

 2.1.Термодинамическая работа. Пусть в цилиндре, закрытом поршнем,  находится газ. Давление газа под поршнем уравновешивается установленным сверху на поршне грузом и давлением внешней среды. Площадь поршня – S.

                                             

 

При каких условиях газ может произвести полезную работу, т.е. поднять груз, преодолевая суммарное давление среды (давление окружающего воздуха и вес груза)? На этот вопрос нужно ответить так: при условии, что давление газа под поршнем будет не меньше давления среды (pгаз     pсреды). В реальных процессах, для того, чтобы сдвинуть поршень из состояния покоя, необходимо, чтобы pгаз   > pсреды. Однако в этом случае, как говорилось ранее, термодинамический процесс расширения газа и совершения им работы будет неравновесным (наличие движущей силы, равной разности давлений внутри и снаружи приведет к ускорению движения поршня и находящегося под ним газа).

Поэтому остается лишь один возможный вариант pгаз   =  pсреды.  

 

                                                                                                                                                          

Выражение (2.1) определяет так называемую термодинамическую работу или работу расширения. При конечном изменении объема полная термодинамическая работы может быть вычислена по уравнению

                                                   ,           Дж      (2.2)

Если отнести величину термодинамической работы к единице массы рабочего тела m, то получим удельную термодинамическую работу:

                            ,       Дж/кг                   (2.3)

где m – масса газа, кг; v - удельный объем, м3/кг.

 

Правило знаков. Знак термодинамической работы определяется знаком произведения pdV. Отметим, что в выражение для работы входит значение давления собственно газа, т.е. абсолютное давление газа. Однако, т.к. ранее было установлено, что всегда pа 0, то знак работы определяется знаком изменения dV:

- при dV 0 рабочее тело (газ) расширяясь совершает работу против внешних сил, работа положительна dL > 0 и берется в вычислениях со знаком «+»;  

- при dV 0 внешние силы совершают работу над рабочим телом (газом), работа отрицательна dL   0 и берется в вычислениях со знаком « - ».  

Геометрическая интерпретация термодинамической работы.

Термодинамический процесс в результате которого совершается термодинамическая работа изображается в координатах pv линией.

p

                                                                  

                                                 v      

      Рис.2.1. Геометрическая интерпретация работы.

2.2. Вычисление теплоты.

Для согласования некоторых положений термодинамики Клаузиус предложил по аналогии с выражением для термодинамической работы вычислять теплоту как произведение обобщенной  силы на обобщенную координату. В качестве «силы», которая обеспечивает передачу теплоты от одних тел к другим, Клаузиус предложил рассматривать температуру, а в качестве обобщенной координаты некоторый параметр состояния, который называется энтропия.

Тогда выражение для вычисления теплоты будет иметь вид

                                          , Дж       (2.4)

где Tтемпература тела, К; dS – изменение энтропии, Дж.

То же в интегральном виде

                                                  .       (2.5)

Эти же выражения для удельных значений теплоты  могут быть представлены:

                                              , Дж/кг      (2.6)                                          

                                                        и

                                                                  (2.7)

Правило знаков. Знак теплоты определяется знаком произведения TdS. Отметим, что в выражение для теплоты входит значение давления собственно газа, т.е. абсолютное давление газа. Из приведенного выше рисунка шкалы Кельвина ясно, что всегда T  0, то знак теплоты определяется знаком изменения dS:

- при dS 0  к  рабочему телу  теплота подводится теплота положительна dQ > 0 и берется в вычислениях со знаком «+»;  

- при dS 0    теплота  отводится  от рабочего тела, теплота отрицательна dQ   0 и берется в вычислениях со знаком « - ».

 

                                                                                        

                                      Рис.2.2. Геометрическая интерпретация теплоты.                      

2.3.Теплота и термодинамическая работа – характеристики процесса.

Из рис.2.1 и 2.2 понятно, что величина работы и теплоты зависит от пути, по которому протекает термодинамический процесс, т.е. от вида функциональных  зависимостей p(v) и T(s) и вида кривых 1-2 на рисунках. Это в свою очередь означает, что и теплота, и работа не отвечают понятиям параметров состояния. Т.к. эти величины зависят от вида термодинамического процесса, то они называются характеристиками (функциями) процесса.       

Следствия из определения теплоты и работы как характеристик процесса.

1. Теплота и работа не обладают свойствами полного дифференциала и поэтому при записи для бесконечно малых значений теплоты и работы не используется символ d… Для обозначения бесконечно малых значений теплоты и работы используется символ δ.

2. Интеграл по замкнутому контуру от δQ  и δL не равен 0, а имеет конечное значение.  

2.4.Теплоемкость рабочих тел. Для количественной оценки теплоты также используется понятие теплоемкости рабочего тела.

Теплоемкость – это количество теплоты, которое необходимо подвести к рабочему телу, чтобы увеличить его температуру на 1 Кельвин (градус Цельсия).

Математически сказанное представляется, как:

                                                           (2.8)

где Cx , Qx – соответственно, теплоемкость и теплота конкретного термодинамического процесса при постоянном параметре процесса х;Т=Т2 – Т1, Т1,Т2 – соответственно, начальное и конечное значения температуры процесса, К. 

Т.к. и теплота, и работа – характеристики процесса, то их величина зависит от функциональной зависимости, которой выражается процесс. Следовательно, в зависимости от того или иного термодинамического процесса, необходимо различать и теплоемкость, которую проявляет рабочее тело в данном конкретном процессе. Т.к. в термодинамике различают 4 основных термодинамических процесса (изобарный, изохорный, изотермический, адиабатный), то и принимается, что рабочее тело может проявлять 4 различных теплоемкости: изобарную, изохорную, изотермическую, адиабатную.  

Сопоставление (2.7) и (2.8) показывает, что теплоемкость Cx - имеет смысл среднеинтегральной величины. Из определений теплоты (имеет смысл только при протекании термодинамического процесса) и теплоемкости (2.8), можно сделать следующие выводы:

-  теплоемкость имеет смысл только для интервала температур Т;

 - теплоемкость является функцией температуры. 

На рис.2.3 показан принцип разбиения диапазона изменения температуры на интервалы с определением среднеинтегрального значения теплоемкости для

заданного  Т.

                                                                                                  

Рис.2.3. Геометрическая интерпретация теплоты.

Каждый раз, разбивая интервал Т меньшие получаем все более узкий диапазон температуры, для которого может быть определено среднеинтегральное значение Сср. Когда интервал Т  уменьшится до бесконечно малой величины dT, будем считать, что нами определено истинное значение теплоемкости для любой из температур границ интервала.

                                                           

                                                    Истинная теплоемкость

                                                                   ,    Дж                    (2.9)

                                                    Удельная истинная теплоемкость

                                                                   ,        Дж/кг                  (2.10)

                                                       

                                                       

                                                    


pсреды

 dH

Пусть в результате расширения газа поршень переместился на небольшую высоту dН.

Элементарная механическая работа, которую совершил газ, действуя на поршень силой

                F = pсреды  S 

будет равна

              dL= pсреды  SdH 

или, принимая во внимание, что

               SdH = dV  - приращение объема, получим

             dL= pсреды  dV

 или

                dL= pdV      (2.1)

p2

p1

v1

v2

1

2

Если провести аналогию с известными из курса физики выражениями для механической работы, то можно заметить, что давление – есть аналог силы, а изменение объема - аналог изменения координаты.

Т.о. можно сказать, что термодинамическая работа – это произведение обобщенной силы на обобщенную координату.

2

1

s2

s1

T1

T2

 T

s

T

 C

2

1

T2

T1

C1ср

Tа

C2ср

dT

T1

T2

C(T)

В выражении  всегда в термодинамической шкале температур Кельвина Т 0. Следовательно, если  0 – теплота имеет знак «+», т.е. подводится к рабочему телу; если  0 – теплота имеет знак «-», т.е. отводится от рабочего тела.    


 

А также другие работы, которые могут Вас заинтересовать

41673. Ознакомление со средой Autocad 2010 3.14 MB
  Интерфейс начальной настройки utoCD 2010 Ранние версии начиная с utoCD 2002 по utoCD 2008 включительно представляло интерфейс рабочего пространства в классическом виде которое представлено на рис. Рисунок 2 Классический вид рабочего окна utoCD 2010 Предлагается рассмотреть вид классического интерфейса окна программы. 3 приведена верхняя часть окна Рисунок 3 Строка заголовка строка меню панель быстрого вызова Рисунок 4 Окно работы с файлом Данное окно вызывается нажатием на после чего выпадает окно представленное на...
41674. Исследование типовых звеньев 193.53 KB
  3 Контрольные вопросы: Что такое передаточная функция Что такое переходная характеристика Что такое импульсная разгонная характеристика Как параметры каждого типового звена влияют на переходные характеристики системы Назовите основные типовые динамические звенья их передаточные и переходные функции. Что такое характеристическое уравнение Что такое нули и полюса передаточной функции Как их найти Какие показатели качества САР можно определить по переходной характеристике Таблица 1.3 Контрольные вопросы: Что такое передаточная...
41675. ФАКТОРНОЕ ИССЛЕДОВАНИЕ ПРОИЗВОДИТЕЛЬНОСТИ ГРУЗОВОГО АВТОМОБИЛЬНОГО ТРАНСПОРТНОГО СРЕДСТВА 60.28 KB
  Исходные данные: Грузоподъемность автомобиля q т Время в наряде Т ч Коэффициент использования грузоподъемсти γ Коэффициент использования пробега β Время постоя под загрузкойразгрузкой t зрч Техническая скорость Vт км ч 10 8 08 09 02 45 Расчетные формулы: Расчет суточной производительности автомобиля Q в тоннах и P в тоннокилометрах производится по следующим формулам: где: Tн время работы автомобиля в наряде; vт средняя техническая cкорость движения автомобиля км ч; qн номинальная...
41676. Исследование однофазного трансформатора 228.47 KB
  Методическое указание Самара Самарский государственный технический университет 2008 Печатается по решению Редакционноиздательского совета СамГТУ УДК621 313 Исследование однофазного трансформатора: метод. Содержат практические рекомендации по экспериментальным методам определения основных характеристик однофазного трансформатора по обработке опытных данных и оформлению отчетов а также контрольные вопросы. Такое изменение или трансформация переменного тока...
41677. Основы работы в MS Excel 192.46 KB
  Знакомство с приложением MS Excel. Приобретение элементарных навыков работы в среде пакета. Ввод и редактирования данных. Основные принципы ввода и редактирования данных изложены во многих книгах по основам работы в MS Excel [3]. Рассмотрим работу в среде пакета на конкретном примере.
41678. Исследование источника дискретной информации 165.5 KB
  А при изпользлвании кода Хаффмена избыточность уменьшилась до 0,51%, из этого следует что избыточность при кодировании этим методом уменьшилась в 16 раз. А при использовании кода Шеннона – Фано избыточность уменьшилась всего в 5,5 раз. Исходя из полученных значений, в нашем случае эффективнее использовать методику кодирования Хаффмена.
41679. Возможности текстового редактора WORD для работы с документами 193.87 KB
  Создание электронной подписи документа и проверка ее подлинности В разделе справка текстового редактора в окне поиск наберите ключевые слова цифровая подпись документа и найдите статью Цифровые подписи и сертификаты в которой вы сможете узнать что такое цифровая подпись что собой представляет сертификат подписи и центр сертификации что обеспечивает цифровая подпись. Для дополнительного чтения Получение цифрового сертификата от центра сертификации или партнера Майкрософт Если предполагается обмениваться документами...
41680. Режимы течения 43.45 KB
  Изменение уровня воды в баке м h 003 002 003 003 2. Температура воды С Т 23 23 23 23 4. Кинематический коэффициент вязкости воды см с v = 17. Объем воды поступившей в бак за время t см3 W = Bh 0000252 0000168 0000252 0000168 6.
41681. Цифровой осциллограф, генераторы сигналов, блок питания и вольтметр универсальный 5.65 MB
  Осциллограф конструктивно выполнен в виде платы расширения ПЭВМ и вставляется в любой из свободных слотов PCIшины материнской платы. Внешний вид осциллографа представлен на рисунке 1.1 Внешний вид осциллографа BORDO На внешней панели осциллографа имеются три стандартных разъема типа СР50. ПЗВМ управляет всеми режимами работы осциллографа осуществляет считывание информации из буферного ОЗУ ее обработку и передачу в видеопамять ПЭВМ для наблюдения на экране монитора.