41143

Первый закон термодинамики

Лекция

Физика

Первый закон термодинамики. До формулировки Первого начала термодинамики в 1840х годах учеными Джоулем 1840 Майером 1842 и Гельмгольцем 1847 в науке наряду с материалистическим пониманием закона сохранения и превращения энергии одной из форм которого и является Первое начало термодинамики существовала теория теплорода. Формулировка Первого начала термодинамики основана на экспериментальных исследованиях. Первый закон термодинамики вообще говоря является постулатом.

Русский

2013-10-23

154.5 KB

37 чел.

Лекция 3.

3. Первый закон термодинамики.

До формулировки Первого начала термодинамики в 1840-х годах учеными Джоулем (1840), Майером (1842) и Гельмгольцем (1847) в науке наряду с материалистическим пониманием закона сохранения и превращения энергии (одной из форм которого и является Первое начало термодинамики) существовала теория теплорода. Сомнение в существовании этой субстанции (теплорода) положили опыты Джоуля, а еще раньше Румфорда. Румфорд обратил внимание на то, что при сверлении пушечных стволов в Лондонском Арсенале сначала холодное сверло и пушечный ствол нагревались без того, чтобы они приводились в контакт с каким-либо источником теплоты (огнем), т.е. никакого источника теплорода не было, а тела нагревались. Следовательно теплота порождалась механической работой, которую выполняло сверло.

Джоуль был первым, кто вычислил механический эквивалент теплоты. Он показал, что между затраченной работой и количеством выделившейся теплоты существует прямо пропорциональная зависимость .

Формулировка Первого начала термодинамики основана на экспериментальных исследованиях. Первый закон термодинамики, вообще говоря, является постулатом. Т.е. он не доказывается, но и нет оснований его опровергнуть, т.к. до сих пор во всех экспериментах и исследованиях нарушений Первого начала термодинамики не обнаружено.

Проводя исследования преобразования теплоты в полезную работу и наоборот ученые экспериментально установили, что:

В любом термодинамическом процессе разность подведенной к рабочему телу теплоты и произведенной этим телом работы не зависит от пути процесса, определяется только начальным и конечным состоянием рабочего тела и может быть определена как изменение внутренней энергии тела.

                                                                                                                                               

Т.к. термодинамика основывается на эксперименте, то строго говоря, разность Q1a2 - L1a2 могла бы быть названа и другим термином. Для термодинамики важно, что этот макропараметр (названный внутренней энергией) обладает свойствами полного дифференциала и является параметром состояния.

В общепринятой записи Первое начало термодинамики записывается в виде уравнения

                                            ,          Дж (Вт)        (3.2)

где Q теплота внешнего источника, Дж (Вт); U – изменение внутренней энергии, Дж (Вт); L- термодинамическая работа, Дж (Вт).

Особенностью математической записи Первого начала является то, что в одну строчку сведен баланс между различными по своей физической природе формами движения материи. В левой части – теплота представляет собой хаотическую форму движения, а в правой – работа, всегда упорядоченная форма движения. Но, несмотря на это, -  главное то, что баланс между частями уравнения всегда соблюдается.

То, что в левой и правой частях уравнения стоят разные по своей природе формы движения материи, не позволяло долгое время сформулировать Первое начало термодинамики. По своей сути, Первое начало термодинамики является одной из форм Закона сохранения и превращения энергии. Но среди всех известных законов сохранения он был сформулирован последним, позже всех остальных именно по причине сложности осознания баланса между теплотой и работой.

В дифференциальном виде Первое начало термодинамики может быть представлено, как

                                          (3.3)

В удельных величинах уравнение (3.2) будет иметь вид

                                                                                             (3.4)

а в дифференциальном виде (3.4) может быть представлено, как

                                      (3.5)

Те же уравнения в развернутом виде могут быть представлены как

                                  (3.6)

                                  (3.7)

Из сказанного важно сделать вывод о том, что Первое начало термодинамики справедливо для любых процессов - обратимых и необратимых.

3.1.Особенности математической записи работы и теплоты для необратимых процессов.

Т.к. в начале курса было установлено, что термодинамика может рассматривать только обратимые процессы (которые могут быть изображены графически), то в p-v координатах площадь под кривой процесса, равная , представляет собой, вообще говоря, работу равновесного термодинамического процесса. Таким образом, работа обратимого (равновесного процесса) равна

            (3.8)

Из предыдущих рассуждений в отношении обратимых (идеальных, теоретических) и необратимых (реальных) процессов легко сделать вывод о том, что работа реального процесса (а реальные процессы неизбежно протекают с потерями) всегда будет меньше работы обратимого процесса. Условно это можно записать, как

                                  ,       (3.9)

где lтр – работа трения, рассеивается в окружающей среде в виде теплоты.

Физический смысл записи (3.9) заключается в том, что в реальном процессе будет получена меньшая работа по сравнению с той, которая вычисляется по формуле (3.8).

По аналогии со сказанным в отношении работы математическое выражение для вычисления теплоты  также относится к обратимым процессам. Другими словами

          (3.10)

В отличие от физического смысла работы, количество теплоты, которое подводится к рабочему телу в реальном процессе, меньше того, которое необходимо для получения заданной работы. Уменьшение теплоты реального процесса объясняется неизбежными потерями в окружающую среду. Сказанное можно проиллюстрировать следующим образом

                                                                                                                                          

Для получения заданного количества теплоты (площадь фигуры s1-1-2-s2) необходимо затратить  в обратимом процессе и количество теплоты , если процесс необратимый.

3.2.Энтальпия. Вторая форма записи Первого начала термодинамики.

Если в уравнении (3.6) положить p=const, то можно записать

    (3.11)

Величина  называется теплосодержанием или энтальпией.  Обозначается  или

                                             (3.12)

Продифференцируем (3.12) в общем случае при произвольном изменении давления; получим

                                         (3.13)

Сравнивая (3.13) с (3.6) можно получить

                              (3.14)

                                        или

                                               (3.15)

где Lp- располагаемая работа, , Дж.

Располагаемая работа – механический эффект взаимодействия рабочего тела со средой при перемещении его из области с давлением р1 в область с давлением р2. 

3.3.Первый закон термодинамики для открытых систем (уравнение Первого закона термодинамики для потока)

                                         

 

Работа, которую выполняет расположенный слева от сечения 1-1 поток рабочего тела над объемом, расположенным правее сечения 1-1 (работа выполняется над объемом, заключенным между сечениями 1-1 и 2-2):

                              

Работа, которую выполняет расположенный слева от сечения 2-2 поток рабочего тела над объемом, расположенным правее сечения 2-2 (работа выполняется собственно самим рабочим телом, заключенным между сечениями 1-1 и 2-2):

                                               

           Суммарная работа потока между сечениями 1-1 и 2-2:

                                                                       (3.16)

В уравнении (3.16) произведения  , соответственно равны изменениям объема, который занимает поток рабочего тела в рассматриваемых областях. Или

                                     

Изменение кинетической энергии потока между сечениями 1-1 и 2-2  может быть представлено, как

                           (3.17)

где m  - массовый расход рабочего тела через поперечное сечение канала. Массовый расход постоянен для любого поперечного сечения канала.

Связь между объемным и массовым расходами имеет вид

                                                                                          (3.18)

С учетом (3.18) уравнение (3.16) можно переписать

                                               (3.19)

Изменение потенциальной энергии потока может быть представлено

                                                                                              (3.20)

При движении поток может выполнять работу, которая называется техническая работа. Если в потоке установить колесо с лопастями (крыльчатку), то работа по вращению крыльчатки является технической работой. Еще один вид технической работы при движении потока в канале может представлять собой деформацию собственно стенок канала и т.д. Обозначим техническую работу как  Lтехн.

Работа на преодоление трения, которое преодолевает поток при движении в канале обозначается, как Lтр.

В общем случае к потоку извне может подводиться теплота, в результате чего полная работа, которую выполняет поток при своем движении может быть  представлена согласно общему выражению для Первого закона термодинамики, как

                 (3.21)

То же в удельных значениях величин

                            (3.22)

В виде (3.21, 3.22) уравнение Первого начала термодинамики для потока применяется редко.  Чаще используется  другая форма записи уравнения (через теплосодержание)

                (3.23)

в дифференциальном виде

                               (3.24)

Уравнение Первого начала термодинамики имеет важное методическое значение, т.к. его анализ демонстрирует его универсальность.

 Важной особенностью уравнения является его применение для течения с трением. Необходимо напомнить, что теплота в левой части уравнения – это внешняя теплота (теплота, которая подводится к потоку извне). Работа трения в свою очередь может быть передана потоку в форме теплоты. Таким образом, в левой части добавится теплота, выделившаяся за счет преодоления сил трения:

                                                    

тогда уравнение (3.24) будет иметь вид

                                

т.к. по сути , то

                                                                (3.25)

Ранее (см. Лекция 3 раздел 3.2) было получено

                                                 (3.26)

Решая совместно (3.24) и (3.26) получим для любого потока

                                

Для течения без трения и технической работы

                                        (3.27)

Для горизонтального потока без трения

                                                    (3.28)

Интегрирование (3.28) дает

                                              

                                                                                                      (3.29)


s

 T

2

1

s2

s1

T1

T2

a

b

Если вычислить экспериментально количество подведенной теплоты в процессах 1a2 и  1b2 и работу, соответственно, Q1a2, Q1b2, L1a2, L1b2, то

Q1a2 - L1a2 = Q1b2 - L1b2        (3.1)

независимо от того по какому пути идет процесс. Т.е. разность теплоты и термодинамической работы обладает свойствами параметра состояния.

Этот параметр получил название внутренней энергии.

     

b

А

s

 T

2

1

s2

s1

T1

T2

В

p1, Σ1

x1

1

Q

2

x2

p2, Σ2

w1

w2

z1

z2

Сжатие

1

асширение


 

А также другие работы, которые могут Вас заинтересовать

25688. Мужские половые клетки 40 KB
  Скорость их движения у человека 3050мкм с Целенаправленному движению способствуют хемотаксис движение к химическому раздражителю или от него и реотаксис движение против тока жидкости. Мужские половые клетки человека сперматозоиды или спермии длиной 70мкм имеют головку и хвост. В ядре сперматозоида человека содержится 23 хромосомы одна из которых является половой X или У остальные аутосомами.
25689. Понятие о системе крови. Эритроциты 47 KB
  Система крови включает в себя кровь органы кроветворения красный костный мозг тимус селезенку лимфатические узлы лимфоидную ткань некроветворных органов. Элементы системы крови имеют общее происхождение из мезенхимы и структурнофункциональные особенности подчиняются общим законам нейрогуморальной регуляции объединены тесным взаимодействием всех звеньев. Так постоянный состав периферической крови поддерживается сбалансированными процессами новообразования гемопоэза и разрушения клеток крови.
25690. МОЧЕВЫДЕЛИТЕЛЬНАЯ СИСТЕМА 41 KB
  Длина его канальцев до 50мм а всех нефронов в среднем около 100 км. Остальные 15 нефронов располагаются в почке так что их почечные тельца извитые проксимальные и дистальные отделы лежат в корковом веществе на границе с мозговым веществом. Таким образом корковое и мозговое вещества почек образованы различными отделами трех разновидностей нефронов. Корковое вещество составляют почечные тельца извитые проксимальные и дистальные канальцы всех типов нефронов.
25691. Устойчивость работы электропривода 281 KB
  Устойчивое, неустойчивое и безразличное состояния электродвигателей. Статическая устойчивость электропривода Совмещенные механические характеристики электродвигателя и механизмов. Влияние эксплуатационных характеристик электродвигателяышечные клетки. Клетки узла проводящей системы. Формирование импульса происходит в синусном узле центральную часть которого занимают клетки первого типа водители ритма или пейсмекерные клетки Рклетки способные к самопроизвольным сокращениям.
25692. Прямая кишка 31 KB
  В тазовой части прямой кишки ее слизистая оболочка имеет три поперечные складки. В анальной части кишки различают три зоны: столбчатую промежуточную и кожную. Слизистая оболочка прямой кишки состоит из эпителия собственной и мышечной пластинок.
25693. Сердце 42.5 KB
  Стенка сердца состоит из трех оболочек: внутренней эндокарда средней миокарда и наружной эпикарда. Первая закладка сердца появляется в начале 3й недели развития у эмбриона длиной 15 мм в виде парного скопления мезенхимных клеток которые расположены в задней части головного отдела зародышевого щитка по сторонам от средней линии под висцеральным листком мезодермы. К 4му месяцу заканчивается образование всех отделов проводящей системы сердца. Клапаны сердца: предсердножелудочковые и желудочковососудистые развиваются в основном...
25694. Развитие нервной ткани 35.5 KB
  Часть клеток нервной пластинки не входит в состав нервной трубки и эпидермальной эктодермы и образует скопления по бокам от нервной трубки которые сливаются в рыхлый тяж располагающийся между нервной трубкой и эпидермальной эктодермой нервный гребень ганглиозная пластинка. Нервная трубка на ранних стадиях эмбриогенеза представляет собой многорядный нейроэпителий состоящий из вентрикулярных или нейроэпителиальных клеток. Вентрикулярная эпендимная зона состоит из делящихся клеток цилиндрической формы. Клетки делятся и после деления...
25695. НЕРВНАЯ СИСТЕМА. Развитие. Нервы. Узлы. Оболочки 34 KB
  Оболочки. Клетки этой оболочки отличаются овальной формой ядер. На поперечном срезе нерва видны сечения осевых цилиндров нервных волокон и одевающие их глиальные оболочки. Соединительнотканные оболочки нерва содержат кровеносные и лимфатические сосуды и нервные окончания.
25696. Взаимодействия клеток в иммунном ответе 53.5 KB
  Узнавание рецептором Тхклетки комплекса АГ молекула МНС II класса на поверхности Влимфоцита приводит к секреции Тхклеткой интерлейкинов ИЛ2 ИЛ4 ИЛ5 ИЛ6 гаммаИФН гаммаинтерферона под действием которых Вклетка размножается и дифференцируется с образованием плазматических клеток и Вклеток памяти. Так ИЛ4 инициирует активацию Вклетки ИЛ5 стимулирует пролиферацию активированных Вклеток ИЛ6 вызывает созревание активированных Вклеток и превращение их в плазматические клетки секретирующие антитела. Они регулируют...