41150

Изобарная и изохорная теплоемкости

Лекция

Физика

3 где индекс х обозначает условия протекания процесса подвода теплоты – индекс указывает при каких условиях подводится теплота: при постоянном давлении или при постоянном объеме.2 то можно предположить что поскольку при постоянном объеме внешняя теплота равна изменению внутренней энергии а при постоянном давлении – изменению теплосодержания рабочего тела то в общем случае это должны быть разные количества теплоты. Другими словами количество теплоты для увеличения температуры на 1 градус при постоянном давлении будет отличаться от...

Русский

2013-10-23

80 KB

69 чел.

Дополнение к Лекциям №№3,4.

Д3.1. Изобарная и изохорная теплоемкости.

Запишем уравнения Первого начала термодинамики для изохорного и изобарного процессов:

, если     и                (Д.1)

, если  и                 (Д.2)

, если                                (Д.2,а)

С другой стороны, исходя из определения теплоемкости (п.2.4) с учетом (Д.1, Д.2) можно записать:

  ,                   (Д.3)

где индекс х обозначает условия протекания процесса (подвода теплоты) – индекс указывает, при каких условиях подводится теплота: при постоянном давлении или при постоянном объеме.

Т.е. если сравнить (Д.1) и (Д.2), то можно предположить, что, поскольку при постоянном объеме внешняя теплота равна изменению внутренней энергии, а при постоянном давлении –  изменению теплосодержания рабочего тела, то в общем случае это должны быть разные количества теплоты. Другими словами, количество теплоты для увеличения температуры на 1 градус при постоянном давлении будет отличаться от количества теплоты, которое необходимо подвести при постоянном объеме, чтобы добиться такого же возрастания температуры (т.е. на 1 градус).    

Для наглядности рассмотрим процесс передачи теплоты рабочему телу (газу), находящемуся в цилиндре под поршнем:

а) поршень закреплен неподвижно б) поршень имеет возможность перемещаться: газ совершает работу против внешних сил

В обоих случаях под поршнем находится один и тот же газ, у которого  в результате подвода теплоты температура повышается на одно то же количество градусов Т. Из рисунка понятно, что:

-  в случае (а) теплота «расходуется» только на увеличение внутренней энергии газа (при этом температура растет);

- в случае (б) теплота «расходуется» на увеличение внутренней энергии газа и работу газа против внешних сил;  в случае (б) теплота «расходуется» на увеличение теплосодержания газа (температура тоже возрастает как и в случае (а) на то же Т ).    

Действительно, сопоставление экспериментальных данных по теплоемкости, измеренной для одного и того же вещества при постоянном объеме и при постоянном давлении, показывает, что эти величины отличаются друг от друга.                     

Обозначается теплоемкость:

- измеренная при постоянном объеме  (изохорная):    ,     Дж/(кг К);

- измеренная при постоянном давлении (изобарная):  ,     Дж/(кг К).

Д3.2. Массовая и объемная теплоемкость.

Количество теплоты, которое изменяет температуру вещества на 1 К и отнесенное к единице массы вещества, называется  удельной массовой теплоемкостью.

                                                                             ,       Дж/(кг К).

                                                                                    

Количество теплоты, которое изменяет температуру вещества на 1 К и отнесенное к единице объема вещества, называется  удельной объемной теплоемкостью.

                                                                             ,       Дж/(кг К).

Изохорная и изобарная теплоемкости могут быть как массовой, так и объемной.                                                                                     

Д3.3. Молярная теплоемкость.

Так как масса вещества может измеряться и в молях (киломолях), то и теплоемкость может быть отнесена к 1 киломолю. Такая теплоемкость называется молярной. Обозначается  как (сх). Из сказанного выше относительно экспериментального определения теплоемкости (при постоянном давлении или постоянном объеме) ясно, что молярная теплоемкость также может быть изобарной или изохорной.

Перевод молярной теплоемкости в массовую выполняется по формуле:

        

                                        

Д3.3. Теплоемкость идеального газа.

В ПРИМЕЧАНИИ 2 после п.4.2.3 (Лекция 4) выведено  уравнение Майера:

,      (Д.4)

или для молярной теплоемкости 

    

Для изохорного процесса (см.Д.1):

                                                   (Д.5)

Для идеального газа внутренняя энергия представляет собой сумму кинетических энергий поступательного движения частиц. Средняя величина кинетической энергии одной частицы равна . Если умножить эту величину на число всех частиц в 1 киломоле (, то получим для идеального газа

          (Д.6)

Принимая во внимание (Д.5) получим:

           (Д.7)

А так как , то       

Полученное выражение подходит для одноатомных газов, т.к. исходной посылкой явились выражения (Д.6, Д.7).

Для двухатомных газов те же соотношения будут иметь вид

                                 

 


Теплота

Теплота

V = const

p = const

М, кг

Q

Q

 V, м3


 

А также другие работы, которые могут Вас заинтересовать

5906. Живописная работа в технике масляной живописи на тему Образ материнства 1.74 MB
  Введение Рождение новой жизни - одно из величайших таинств на земле, и потому имя Матери всегда окружено благоговением. Самое дорогое и родное связано с мамой. Земля, Родина, природа, красота, любовь - каждое из этих слов можно соединить со сло...
5908. РЕГУЛЯЦИЯ СИСТЕМЫ КРОВООБРАЩЕНИЯ 33.67 KB
  В зависимости от скорости развития адаптивных процессов все механизмы регуляции гемодинамики делят на 3 группы: кратковременные (нервные и гуморальные); промежуточные во времени; длительного действия...
5909. Попечение Русской Православной Церкви о пожилых людях 160.47 KB
  Актуальность исследуемой проблемы заключается в отсутствии систематического подхода, а также в неразработанности вопроса попечения Русской Православной Церкви о пожилых людях. Термин попечение был выбран не случайно, он включает полный ко...
5910. Безпека життєдіяльності. Курс лекцій 277 KB
  Змістовний модуль 1. Методологічні основи безпеки життєдіяльності 1.1. Поняття та суть безпеки життєдіяльності 1.2. Поняття небезпеки 1.3. Класифікація небезпек Поняття та суть безпеки життєдіяльності Безпеку життєдіяльності зазвичай розглядаю...
5911. Основи педагогіки вищої школи. Лекції 1.06 MB
  Предмет, задачі, основні категорії та методи педагогіки вищої школи. Основи дидактики вищої школи. Принципи та методи навчання у вищому навчальному закладі. Форми організації навчання у вищій школі.
5912. Основи музеєзнавства. Курс лекцій 335 KB
  Лекция 1 Сущность и значение музея и музейного дела Понятие о музееведении как науке Музей как социокультурное явление Музей как учреждение культуры Классификация музеев Понятие о музееведении как науке Наука о музейном де...
5913. Технології у виробничій діяльності. Конспект лекцій 3.02 MB
  Проектування як складова сучасного виробництва та життєдіяльності людини Лекція Загальні основи проектування у виробничій діяльність людини. Основні ознаки проектної діяльності. Види проектів. Основні поняття: проект, проектування...
5914. Основи термодинаміки. Курс лекцій 3.72 MB
  Основні поняття та закони термодинаміки Теплотехніка - наука, яка вивчає процеси одержання та використання теплоти в різних виробництвах, а також машини та апарати, які використовуються для сіх цілей. Технічна термодинаміка - вив...