41185

Комплексный (символический) метод расчета электрических цепей при периодическом синусоидальном воздействии

Лекция

Физика

Из курса Математики известно что комплексное число можно представить в виде вектора на комплексной плоскости а действительная и мнимая части комплексного числа есть проекции вектора на вещественную и мнимую оси. Если допустить что вектор А на комплексной плоскости вращается против часовой стрелки с угловой скоростью  то это комплексное число запишется: Величину назвали оператор вращения. Комплексное число назвали комплексной амплитудой тока а комплексном действующего значения тока. Комплексное число назвали комплексной...

Русский

2013-10-23

267.5 KB

21 чел.

Лекция 8. Комплексный (символический) метод расчета электрических цепей

при периодическом синусоидальном воздействии.

 

Из курса "Математики" известно, что комплексное число можно представить в виде вектора на комплексной плоскости, а действительная и мнимая части комплексного числа есть проекции вектора на вещественную и мнимую оси.

(В электротехнике, т.к. буква i изображает ток, за признак мнимости  принята буква j, а само число или сверху точка, или снизу подчеркнуто  ,  ).

;

            А – модуль;

                     – аргумент или фаза.

 

Если допустить, что вектор А на комплексной плоскости вращается против часовой стрелки с угловой скоростью , то это комплексное число запишется:

Величину  назвали – оператор вращения.

Можно видеть, что мгновенное значение периодического синусоидального тока и напряжения ,  похоже на мнимую часть нашего вращающегося комплексного числа, т.е. можно утверждать:

,

.

Комплексное число  назвали комплексной амплитудой тока, а  – комплексном действующего значения тока.

Комплексное число  назвали комплексной амплитудой напряжения, – комплексом действующего значения напряжения (как мы помним , ).

Можно видеть, что мгновенное значение периодического синусоидального тока и напряжения есть мнимая часть произведения комплексной амплитуды тока или напряжения на оператор вращения  .

Пример:

А,   А,  А.

; , В.

Таким образом, реальные мгновенные значения синусоидального тока и напряжения мы можем заменить неким символом – комплексной амплитудой или комплексом действующего значения тока и напряжения, помня все время об операторе  и  (отсюда и название метода – комплексный или символический).

Посмотрим на расчете простейшей электрической схемы, что нам это даст.

Последовательное соединение R, L, C.

 По 2-му закону Кирхгофа:

  (1)

Тогда (1) можно записать:

 (2)

В математике давно доказано, что операции над мнимыми частями комплексных чисел равноценны операциям над комплексным числом с выделением из результата мнимой части.

Тогда (2) примет вид:

Решили данное уравнение:

        .

Видим, что на  можно сократить, и помня, что , , ,  в результате получим:

где      – назвали комплексным сопротивлением,

 –комплексным индуктивным сопротивлением,

          –комплексным емкостным сопротивлением,

          –комплексным реактивным сопротивлением (знак показывает, какое сопротивление больше – индуктивное или емкостное).

Следует помнить: , , , , .

В результате получим, что нашу исходную схему с реальными мгновенными синусоидальными токами и напряжениями можно заменить схемой с комплексным сопротивлением , в которой есть комплексные амплитуды или комплексы действующих значений токов или напряжений.

        ,

        

 

Получили закон Ома в комплексной форме, а также переход от комплексной величины тока и напряжения к мгновенному значению имеет только одно решение, можно записать законы Кирхгофа в комплексной форме:

1-й закон (в узле электрической цепи)

2-й закон (в замкнутом контуре цепи)

\

.

Используя при расчетах схемы с комплексными сопротивлениями, комплексами токов и напряжений мы от интегрально-дифференциальных уравнений для мгновенных значений токов и напряжений в реальной схеме, имеем уравнения обычной алгебры, но с комплексными числами. В этом основное преимущество данного метода.

Комплексное число всегда можно представить в виде вектора на комплексной плоскости. Диаграмма, отражающая совокупность векторов токов и напряжений с учетом их фаз по 1 и 2 законам Кирхгофа на комплексной плоскости называется векторной диаграммой (она широко используется при расчетах).

Для нашей схемы:

       

,

     

       (надо помнить, что  )

Параллельное соединение R, L, С.

     

Примем

Оперируем  комплексом тока и напряжения и отбросим .

,

где , , , ,

, .

– комплексная полная проводимость;

– комплексная индуктивная проводимость;

– комплексная емкостная проводимость;

– комплексная реактивная проводимость.

Связь между комплексными сопротивлениями и проводимостями:

;

;

;

;

;

;

; ;

;

; .

Комплексная мощность

За комплексную мощность  приняли произведение комплекса действующего значения напряжения  на сопряженный комплекс действующего значения тока  (сопряженный комплекс изменен на обратный () знак прямого комплексного числа (, )).

Если , ,  тогда учитывая известные ранее полную мощность , активную мощность , реактивную мощность ,  имеем:

В электрических цепях при периодическом синусоидальном воздействии имеет место баланс мощностей источников и нагрузок, т.е. комплексная мощность источников энергии должна быть ровна комплексной мощности нагрузок и активные и реактивные мощности источников равны активной и реактивной мощностям нагрузок.

,

, ,

, .

Знак реактивной мощности означает преимущество индуктивного (+) или емкостного (–) сопротивлений.


 

А также другие работы, которые могут Вас заинтересовать

84556. Міогенна і гуморальна регуляція тонусу судин. Роль ендотелія судин в регуляції судинного тонусу 45.08 KB
  Роль ендотелія судин в регуляції судинного тонусу. Базальний тонус судин той який притаманний судинам за відсутності нервових та гуморальних впливів вивчати можна на ізольованій судині. Кількість гладеньких мязів що здатні до автоматії більша в дистальних судинах ніж в проксимальних; більша в артеріальних судинах ніж у венозних.
84557. Гемодинамічний центр. Рефлекторна регуляція тонусу судин. Пресорні і депресорні рефлекси 44.84 KB
  Гемодинамічний центр ГДЦ розташований в довгастому мозку хоча в регуляції системного кровообігу беруть участь всі рівні ЦНС від кори ГМ до спинного мозку. В структурі ГДЦ виділяють: пресорний відділ ПВ депресорний відділ ДВ еферентне парасимпатичне ядро блукаючого нерва Х. Третім структурним елементом ГДЦ є парасимпатичне ядро блукаючого нерва. Аферентні звязки ГДЦ.
84558. Рефлекторна регуляція кровообігу при зміні положення тіла у просторі (ортостатична проба) 45.13 KB
  Регуляція САТ відбувається: за відхиленням у відповідь на зміну САТ вмикаються регуляторні механізми які повертають його до вихідного рівня саморегуляція або регуляція на основі негативного зворотнього звязку; така регуляція має місце при необхідності стабілізувати САТ на певному рівні: за збуренням збурення дія якогось зовнішнього по відношенню до системи кровообігу фактора потребує зміни САТ в певному напрямку; інформація про дію збурення передається в КП ГДЦ по каналу зовнішнього звязку ГДЦ виробляє керуючий сигнал що...
84559. Регуляція кровообігу при м’язовій роботі 45.45 KB
  Підвищення САТ є результатом рефлексу з пропріорецепторів працюючих мязів активація ПВ ГДЦ та гальмування ядра блукаючого нерва збільшення ЧСС та СО ріст ХОК ріст САТ; звуження артеріальних та венозних судин також зумовлюють ріст САТ. Рефлекс з пропріорецепторів працюючих мязів є основним але не єдиним механізмом розвитку пресорної реакції при мязовій роботі. Регуляція кровотоку в мязах при фізичній роботі спрямована на забезпечення його розширення зменшення опору цих судин збільшення обємної швидкості кровотоку через працюючі...
84560. Особливості кровообігу у судинах головного мозку і його регуляція 42.75 KB
  Унікальною особливістю кровообігу ГМ є те що воно відбувається в замкнутому просторі непіддатливого черепа та перебуває в динамічному взаємозвязку з кровообігом спинного мозку та переміщенням спинномозкової рідини. Величина мозкового кровообігу відносно постійна складає 750 мл хв 15 від ХОК маса мозку 2 від маси тіла. Кровотік в мозку нерівномірний краще кровопостачаються ділянки сірої речовини бо тут найвищий рівень обміну речовин.
84561. Особливості кровообігу у судинах серця i його регуляція 43.46 KB
  Високий рівень кровотоку в стані спокою 250 мл хв 5 від ХОК маса серця 05 від маси тіла. Високий тонус вінцевих судин в стані спокою незважаючи на високий рівень метаболізму ця умова забезпечує здатність вінцевих судин до розширення та збільшення кровотоку під час посиленої діяльності 5. Залежність кровотоку від фаз СЦ: він знижується під час систоли артерії стискуються міокардом та збільшується під час діастоли. Головна особливість в регуляції серцевого кровотоку полягає у перевазі місцевих механізмів над центральними.
84562. Особливості легеневого кровообігу його регуляція 43.31 KB
  В легенях розрізняють дві групи судин: одні виконують трофічну функцію живлять тканину легень бронхів та відносяться до судин великого кола кровообігу інші функцію газообміну та відносяться до судин малого кола. Далі мова піде про судини малого кола кровообігу. Артеріальні судини за своїми властивостями та будовою нагадують венозні судини вони легко розтягуюються та реагують зміною обєму на зміну трансмурального тиску. В артеріальних судинах легень відсутні спеціальні судини опору.
84563. Механізми лімфоутворення. Рух лімфи посудинах 43.75 KB
  Рух лімфи посудинах. Утворення лімфи відбувається за участі судин гемомікроциркулярного русла. Утворення лімфи. Головну роль в утворенні лімфи відіграють лімфатичні капіляри: на відміну від кровоносних вони сліпі більш широкі у них ширші міжклітинні щілини відсутня базальна мембрана проникність стінок лімфатичних капілярів дуже висока.
84564. Загальна характеристика системи дихання. Основні етапи дихання. Біомеханіка вдиху і видиху 49.56 KB
  Основні етапи дихання. Дихання процес обміну газів О2 та СО2 між атмосферним повітрям та тканинами організму. СИСТЕМА ДИХАННЯ ВИКОНАВЧІ ОРГАНИ МЕХАНІЗМИ РЕГУЛЯЦІЇ Грудна клітина Нервові Гуморальні Дихальні мязи Плевра Забезпечення оптимального газообміну між атмосферним повітрям та тканинами організму.