41195

КОНТРОЛЬ ПАРАМЕТРОВ ПЛЕНОК И ТЕХНОЛОГИЧЕСКИХ РЕЖИМОВ ИХ НАНЕСЕНИЯ

Лекция

Физика

Наиболее важен контроль в камере так как в зависимости от его результатов регулируются режимы процесса роста пленки что позволяет устранить операции подгонки ее параметров после нанесения. Метод микровзвешивания в основном используемый в производстве гибридных ИМС состоит в определении приращения массы Δm подложки после нанесения на нее пленки. При этом среднюю толщину пленки определяют по формуле: где площадь пленки на подложке; удельная масса нанесенного вещества. При измерении толщины пленки взвешиванием считают что плотность...

Русский

2013-10-23

143.5 KB

55 чел.

Лекция 11

КОНТРОЛЬ ПАРАМЕТРОВ ПЛЕНОК И ТЕХНОЛОГИЧЕСКИХ РЕЖИМОВ ИХ НАНЕСЕНИЯ

Получение высококачественных пленок с заранее заданными и воспроизводимыми параметрами предопределяет необходимость строгого контроля при их нанесении. Особенности контроля параметров тонкопленочных элементов определяются малыми толщинами наносимых пленок (от нескольких десятков до сотен нанометров). Параметры пленок контролируют непосредственно в процессе их нанесения в вакуумной рабочей камере, и после нанесения, т. е. вне камер. Наиболее важен контроль в камере, так как в зависимости от его результатов регулируются режимы процесса роста пленки, что позволяет устранить операции подгонки ее параметров после нанесения.

Рассмотрим основные способы измерения и контроля таких параметров пленок, как толщина, электрическое сопротивление, адгезия и важнейшего технологического режимаскорости нанесения. В зависимости от назначения пленок обычно определяют метод их контроля и контролируют один или два параметра.

Измерение толщины пленок. Толщину пленок измеряют такими наиболее распространенными методами, как микровзвешивание и многолучевая интерферометрия.

Метод микровзвешивания, в основном используемый в производстве гибридных ИМС, состоит в определении приращения массы Δm подложки после нанесения на нее пленки. При этом среднюю толщину пленки определяют по формуле:

где площадь пленки на подложке; удельная масса нанесенного вещества.

Этот метод несложен, но требует, чтобы форма подложки была простой, а ее поверхность в хорошем состоянии. Кроме того, на точность измерений влияет удельная масса нанесенного материала, которая может изменяться в зависимости от условий технологических режимов (остаточного давления, загрязнений молекулами газа и др.).

При измерении толщины пленки взвешиванием считают, что плотность нанесенного вещества равна плотности массивного. Под эффективной толщиной пленки понимают толщину, которую она имела бы, если бы образующее ее вещество было равномерно распределено по поверхности с плотностью, равной плотности массивного вещества.

Чувствительность метода взвешивания составляет 1—10 мкм/м и зависит от чувствительности весов и площади пленки на подложке

Метод многолучевой интерферометрии, применяемый для измерения толщины непрозрачных пленок, основан на наблюдении в микроскоп интерференционных полос, возникающих при рассмотрении в монохроматическом свете двух поверхностей, расположенных под углом друг к другу.

Перед измерением получают на образце так называемую ступеньку резкую боковую границу пленки на подложке. Для этого маскируют часть подложки при осаждении пленки или химически удаляют часть осажденной пленки. В микроскоп наблюдают сдвиг интерференционных полос (рис.17). Чередующиеся светлые и темные интерференционные полосы с шагом L на поверхности, как пленки, так и подложки смещаются относительно друг друга у их границы на значение l.

Рис.  17. Сдвиг интерференционных полос

Измеряя с помощью микроинтерференционного микроскопа смещение какой-либо определенной полосы, рассчитывают толщину пленки по формуле

где длина волны монохроматического света, равна 0,54 мкм; - шаг между соседними интерференционными полосами; l смещение интерференционной полосы.

Точность этого метода измерения толщины пленки составляет 15—30 нм.

Если пленка прозрачная, в месте "ступеньки" на нее и подложку осаждают дополнительно непрозрачную, хорошо отражающую свет металлическую пленку (например, алюминия), толщина которой, чтобы уменьшить вносимую погрешность, должна быть много меньше толщины измеряемой пленки.

Измерение электрического сопротивления пленок. Электрическое сопротивление пленок измеряют резистивным датчиком с внешним измерительным прибором. В основном этот метод применяют при контроле изготовления резисторов гибридных ИМС, и он основан на том, что по мере утолщения пленки в процессе роста сопротивление ее уменьшается. Это позволяет непосредственно при нанесении контролировать сопротивление пленки, а при достижении номинальной ее толщины прекратить процесс.

При измерениях (рис.18) предварительно изготовляют специальную контрольную подложку (свидетель) 1 из изоляционного материала (стекла, ситалла), на которую наносят плоские контактные площадки 2 из серебра или другого материала высокой проводимости. Затем эту подложку "свидетель" устанавливают в рабочую камеру как можно ближе к рабочей подложке 3. Это необходимо для того, чтобы обе подложки при нанесении пленки находились в одинаковых условиях. Резистивную пленку наносят на контрольную и рабочую подложки одновременно.

Рис. 18.

При монтаже резистивного датчика в рабочую камеру соединяют контакты "свидетеля" с измерительным мостом, в результате чего сопротивление "свидетеля" регистрируется внешним прибором. В процессе осаждения резистивного материала рост пленки происходит как на рабочих подложках, так и на контрольной, т. е. формируется "резистор-свидетель". По мере роста сопротивление пленки уменьшается и соответственно уменьшается сопротивление "резистора-свидетеля". При достижении номинального (заданного) сопротивления наносимой пленки на "свидетеле" по цепи обратной связи поступает сигнал, которым либо выключается питание испарителя, либо закрывается заслонка.

Поскольку считают, что характеристики пленок на подложке и "свидетеле" одинаковые, внешний измерительный прибор может быть отградуирован в единицах сопротивления (при постоянной температуре подложки).

Погрешность измерения сопротивления при контроле этим методом составляет примерно ± 10 % и определяется неравномерностью толщины пленки по поверхности (т. е. отличием сопротивлений "свидетеля" и рабочей подложки), а также погрешностями измерений.

Внешний измерительный прибор можно также отградуировать в единицах длины. Толщину пленки в этом случае определяют по формуле

где ρ удельное сопротивление пленки; Rсв сопротивление пленки на "свидетеле" между контактами; L. и h длина и ширина пленки на "свидетеле".

Чувствительность метода составляет 1 — 5 нм, а предельная толщина измеряемых пленок около 1 мкм.

Под толщиной пленки при этом понимают толщину, которую имел бы ее слой, если бы его удельное сопротивление было равно удельному сопротивлению массивного металла. Вследствие неопределенности значения удельного сопротивления наносимых пленок точность измерений этим методом невелика.

Измерение адгезии пленок. Сцепление (прилипание) поверхностей разнородных тел называют адгезией. Адгезия пленки к подложке зависит от материала пленки и скорости ее осаждения, а также от чистоты поверхности и температуры подложки.

В настоящее время не существует доступных промышленных методов высокоточного измерения адгезии тонких пленок к подложкам. Поэтому выполняют сравнительный контроль, при котором измеряют усилие отрыва пленки от подложки напаянным на ее поверхность металлическим цилиндром. В центре свободного торца цилиндра закрепляют гибкий тросик, связанный через рычаг с чашкой весов. Чтобы по усилию отрыва Р определить адгезию Ga, необходимо точно знать площадь контакта Fk и исключить вызывающий неравномерное распределение усилия по его площади перекос цилиндра. Рассчитывают адгезию по формуле

Обычно площадь торца цилиндра около 1 мм2. Для получения надежных данных следует измерить адгезию несколько раз, контролируя, не произошел ли отрыв по месту спая и не растворилась ли пленка в припое.

Разновидность этого метода контроль адгезии металлических пленок по отрыву от подложки с помощью тонкой золотой или алюминиевой проволоки, присоединяемой к пленке термокомпрессией. При этом площадь контакта составляет 50 — 200 мкм2, что позволяет более точно определять адгезию локальных участков пленки.

Измерение скорости нанесения пленок. Наиболее распространен контроль скорости нанесения пленок методом кварцевого датчика, который иногда называют резонансно-частотным. В качестве датчика при этом методе используют включенный в контур генератора частоты кварцевый элемент.

Принцип действия кварцевого датчика основан на зависимости частоты генерируемых сигналов от изменения массы кварцевого элемента при нанесении на его поверхность пленки. С увеличением массы кварцевого элемента его резонансная частота падает. Для линейного участка зависимости частоты от массы нанесенной пленки справедливо следующее соотношение:

где т0 и fо масса и резонансная частота кварцевого элемента до нанесения пленки; Δm и Δf изменение массы кварцевого элемента и резонансной частоты после нанесения пленки.

Таким образом, по изменению скорости (сдвига) резонансной частоты, фиксируемому измерительным прибором, определяют скорость роста пленки.

Основной частью кварцевого датчика (рис. 19) является кварцевый элемент 5 круглой или квадратной формы, на обе поверхности которого для подачи напряжения наносят тонкие слои золота или серебра. Кварцевый элемент крепится на изоляторе 4 и закрывается кожухом 3, который вставляется в массивный медный держатель 2, охлаждаемый по трубке 1 проточной водой. В кожухе и держателе имеется сквозное отверстие 6 для пропускания потока частиц наносимого материала к кварцевому элементу.

Рис. 19.

Необходимость эффективного охлаждения держателя объясняется тем, что кристаллы кварца очень чувствительны к изменениям температуры. При нанесении пленок источники излучают значительное количество теплоты, что вызывает повышение температуры кварцевого элемента. Нестабильность температуры кварцевого элемента является основной причиной неконтролируемого изменения частоты. Для исключения погрешностей измерений из-за нестабильности температуры датчика держатель охлаждают.

Этим методом можно также с учетом геометрических размеров кварцевого элемента и массы нанесенной пленки измерить ее толщину, используя следующую формулу:

где Fп площадь кварцевого кристалла, покрытая пленкой наносимого вещества; ρп плотность наносимой пленки.

Точность измерения толщины тонких металлических и диэлектрических пленок в интервале от 10 нм до 5 мкм составляет ± 10%.

Выпускаемые серийно приборы позволяют задавать требуемую толщину пленки, после нанесения которой подается сигнал, останавливающий процесс. Для выполнения точных измерений приборы градуируют отдельно для каждого материала.

Максимально допустимая суммарная толщина пленки, наносимой на кварцевый датчик, определяется максимальным сдвигом частоты и примерно составляет 20 мкм алюминия. Максимальное значение измеряемой толщины можно увеличить, перекрывая периодически кварцевый элемент экраном.

Существенным недостатком метода является то, что помимо градуировки по осаждаемому материалу необходима также периодическая чистка кварцевых элементов от осажденной пленки.


 

А также другие работы, которые могут Вас заинтересовать

42182. ИССЛЕДОВАНИЕ НЕСИММЕТРИЧНОГО ПАССИВНОГО ЧЕТЫРЕХПОЛЮСНИКА 222.5 KB
  Исследование линейного пассивного четырехполюсника при переменной нагрузке определение на основании опытных данных постоянных четырехполюсника А В С D и построение круговой диаграммы. Активные четырехполюсники в своих ветвях содержат источники энергии в пассивных четырехполюсниках источников энергии нет. Для любого пассивного четырехполюсника напряжение и ток на входе и выходе связаны между собой уравнениями:...
42183. ИССЛЕДОВАНИЕ СИММЕТРИЧНОГО ЛИНЕЙНОГО ПАССИВНОГО ЧЕТЫРЕХПОЛЮСНИКА 195 KB
  Исследование линейного симметричного пассивного четырехполюсника при переменной нагрузке.Определение на основании опытных данных постоянных четырехполюсника А В С. Определение характеристического сопротивления и коэффициента передачи симметричного четырехполюсника.
42184. ИССЛЕДОВАНИЕ ТРЕХФАЗНОЙ ЦЕПИ С ПРИЕМНИКАМИ, СОЕДИНЕННЫМИ ЗВЕЗДОЙ ПРИ ОДНОРОДНОЙ (АКТИВНОЙ) НАГРУЗКЕ ФАЗ 582.5 KB
  Ознакомление с распределением напряжений и токов в трехфазной цепи соединенной звездой при равномерной и неравномерной однородной нагрузке фаз при наличии и отсутствии нейтрального провода. Векторы фазных и линейных напряжений в симметричной трехфазной системе соединенной звездой. Систему фазных напряжений источника питания для действующих значений можно записать в комплексной форме следующим образом: ; ;...
42185. Вентиляція. Технічні випробування витяжної вентиляційної установки 520 KB
  Для забезпечення в робочих приміщеннях комфортних метеорологічних умов і належної чистоти повітря з метою нормального фізіологічного стану і високої ефективності праці робітників встановлюються вентиляційні установки. Безпосереднє призначення виробничої вентиляції боротьба з надлишком тепла і вологи створення достатнього повітрообміну в приміщенні а також видалення шкідливих газів парів і пилу що надходять в повітря робочих приміщень за допомогою місцевих локалізуючи пристроїв . В останньому випадку вентиляційні пристрої повинні також...
42186. ССЛЕДОВАНИЕ ТРЕХФАЗНОЙ ЦЕПИ С ПРИЕМНИКАМИ, СОЕДИНЕННЫМИ ЗВЕЗДОЙ ПРИ НЕОДНОРОДНОЙ НАГРУЗКЕ ФАЗ 172.5 KB
  Опытная проверка соотношений между напряжениями и токами в трехфазной цепи с приемниками соединенными звездой при неоднородной нагрузке фаз. Общие теоретические сведения Общие элементы теории трехфазной системы с приемниками соединенными звездой приведены в описании лабораторной работы №9. Неоднородность нагрузки фаз в трехфазной системе вносит существенные изменения в режим работы трехфазной цепи по сравнению с однородной нагрузкой....
42187. ИССЛЕДОВАНИЕ ТРЕХФАЗНОЙ ЦЕПИ С ПРИЕМНИКАМИ, СОЕДИНЕННЫМИ ТРЕУГОЛЬНИКОМ 296.5 KB
  Положительные направления токов в фазах треугольника принято обозначать по часовой стрелке т. Они будут равны геометрической разности соответствующих фазных токов: 11.2 показаны векторная топографическая диаграмма напряжений и векторная диаграмма токов для симметричной активной нагрузки. Векторная топографическая диаграмма напряжений и векторная диаграмма токов для симметричной активной нагрузки соединенной треугольником.
42188. ИССЛЕДОВАНИЕ АПЕРИОДИЧЕСКОГО И КОЛЕБАТЕЛЬНОГО РАЗРЯДОВ КОНДЕНСАТОРА 325.5 KB
  Исследование процесса разряда конденсатора на активное сопротивление. Определение влияния на разряд конденсатора значения активного сопротивления. Опытное определение величины емкости конденсатора по осциллограмме. Исследование колебательного разряда конденсатора.
42189. ИССЛЕДОВАНИЕ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ С НЕСИНУСОИДАЛЬНЫМИ НАПРЯЖЕНИЯМИ И ТОКАМИ 185 KB
  Разложение несинусоидальной кривой графо-аналитическим способом в ряд Фурье и определение коэффициентов характеризующих несинусоидальную кривую. Определение влияния характера цепи R; RL; RC на форму кривой несинусоидального тока при подключении ее к источнику несинусоидального напряжения. Определение ординат несинусоидальной кривой в m дискретных точках.10 Затем находят соответствующие ординаты кривой f1ωt; f2ωt; f3ωt и заменяют интегралы...