4125

Обробка результатів вимірювань при виконанні лабораторних робіт з курсу Фізика

Лабораторная работа

Физика

Обробка результатів вимірювань при виконанні лабораторних робіт з курсу Фізика Вимірювання фізичних величин є метою кожної лабораторної роботи з фізики. Вимірювання – це процес порівняння фізичної величини з іншою, якає є однорідною з нею, і як...

Украинкский

2012-11-13

126 KB

7 чел.

Обробка результатів вимірювань при виконанні лабораторних робіт з курсу Фізика

Вимірювання фізичних величин є метою кожної лабораторної роботи з фізики. Вимірювання – це процес порівняння фізичної величини з іншою, якає є однорідною з нею, і яка прийнята за одиницю вимірювання. При цьому розрізняють прямі та непрямі вимірювання.

Виміряти фізичну величину (ФВ)  це значить знайти дослідним шляхом значення фізичної величини, використовуючи технічні засоби. Вимірювання поділяються на прямі та непрямі. Прямі вимірювання отримуються шляхом безпосерднього спостереження за мірою або приладом. Непрямі вимірювання отримуюмуються шляхом розв’язування рівнянь.

Результати вимірювань ФВ, наприклад, в лабораторії завжди є не абсолютно точними, а наближеними. Точність вимірювань залежить від багатьох факторів. Мірою точності вимірювань є похибка. Похибки вимірювань можна класифікувати по-різному. Наприклад: похибки методу вимірювань, інструментальні похибки, похибки через зовнішні впливи на засоби і об’єкти вимірювань, похибки відліку, суб’єктивні похибки. В основному похибка складається з інструментальної похибки та похибки відліку.

Похибки поділяються також на абсолютні та відносні.

Абсолютна похибка ФВ х - це іменоване число, яке показує межі вимірюваної ФВ.

Абсолютна похибка  визначається різницею між істинним та наближеним значеннями вимірюваної ФВ.

Відносна похибка – це відношення абсолютної похибки вимірювання до істинного значення вимірюваної величини. Відносна похибка вимірюється у відсотках, використовується для порівняння якості вимірювань різнорідних величин.

Існують різні методи визначення величин похибок.

Метод середнього арифметичного

Метод середнього арифметичного застосовується при прямих вимірюваннях, коли похибка вимірювального приладу менша похибки відліку.

Найбільше до істинного значення вимірюваної ФВ наближається її середнє арифметичне значення. Нехай маємо n прямих вимірювань ФВ х:

.

  1.  Визначається середнє арифметичне ФВ х

                                             (1)

Примітка. При кінцевому числі n величина  називається виборочним середнім або середнім вибірки.

  1.  Визначається абсолютна похибка кожного вимірювання

  1.  Обчислюється середня абсолютна похибка

                                         (2)

  1.  Обчислюється відносна похибка

                                                   (3)

Якщо в процесі багатократних вимірювань вимірювальний прилад дає однакові покази, то за максимальну абсолютну похибку приймають похибку вимірювального приладу або ціну поділки шкали приладу.

  1.  Записується результат вимірювання

                                                    (4)

Статистичний метод

Похибки також поділяються на систематичні, випадкові, промахи. Систематичні похибки та промахи можна звести до мінімального значення, наприклад до нуля. Випадкові похибки - це похибки, які в однакових умовах мають різні значення. Випадкові похибки не можна звести до нуля, можна лише зменшити їхню величину шляхом збільшення кількості вимірювань в ідентичних умовах. Випадкові похибки досліджуються в теорії імовірностей. Похибки відліку при зніманні показів мір або вимірювальних приладів оком людини також можна обробляти статистичним методом.

Закон нормального розподілу випадкових похибок та статистична обробка при нормальному розподілі результатів спостережень

Нехай маємо n (100) вимірювань ФВ х(). Обчислимо середнє арифметичне ФВ х -  і знайдемо абсолютні похибки . Розглянемо величини цих випадкових похибок і розділимо їх на певні інтервали, враховуючи їхній знак. Побудуємо гістограму. Для цього по осі ОХ відкладатимемо величини похибок, а по осі ОY кількість похибок які потрапляють в цей інтервал.


Якщо кількість вимірювань збільшувати (), а величину інтервалу зменшувати, то гістограма наближатимеся до плавної кривої, яка має форму кривої Гаусса (нормальний розподіл Гаусса або розподіл густини імовірностей). Аналітичний вигляд кривої Гаусса є

                                           (5)

– густина імовірності. Вона дозволяє визначити імовірність dP появи випадкової похибки в інтервалі похибок d(Δx) за формулою

,

а імовірність появи випадкової похибки в кінцевому інтервалі значень [Δx1, Δx2] буде дорівнювати

                                               (6)

Δx - абсолютна випадкова похибка результату спостереження, коли систематична похибка повністю виключена, параметр σ називається дисперсією і характеризує розкид значень випадкової похибки відносно нульового значення. Квадратний корінь з дисперсії називається середньо квадратичним відхиленням (середньо квадратичною похибкою). Параметр σ зручно використовувати для оцінки якості проведених спостережень. Так, якщо його значення взяти в якості границь випадкової похибки результату спостереження, то за формулою (6) імовірність Р1 того, що похибка результату спостереження перебуває в межах [-σ, +σ], дорівнює

                            (7)

Аналогічно можна отримати імовірність появи похибки реультату спостереження в межах інтервалу [-2σ, +2σ] – вона дорівнює 0,95, а в межах інтервалу [-3 σ, +3 σ] – 0,99. Це означає , що з серії спостережень, кількість яких прийнято за 100%, для 68% з них випадкова похибка не вийде за межі , у 95% - за межі 95 % , а для 99% - за межі . Тобто , параметр σ дозволяє визначити границі інтервалу випадкової похибки з деякою імовірністю. Середньо квадратичну похибку називають ще стандартною похибкою. Середньо квадратична стандартна похибка визначається за формулою

                                              (8)

Формула (8) дає дещо занижене значення дисперсії, бо  відрізняється від істинного значення вимірюваної величини, тому оцінка середньо квадратичної (стандартної) похибки проводиться на основі дослідних даних за формулою

                                          (9)

Верхня та нижня границі інтервалу, що покриває з заданою імовірністю похибку вимірювання, називаються довірчими границями похибки, інтервал – довірчим, а імовірність, що його характеризує – довірчою імовірністю. Границі довірчого інтервалу визначаються за формулою

                                                   (10)

Для довірчого інтервалу 68%  (для значень  є таблиці).

Таким чином, результатом вимірювання ФВ є середнє арифметичне результатів спостережень та довірчий інтервал випадкової похибки.

При кінцевій кількості спостережень (вимірювань) розподіл Гаусса застосовується з певним ступенем наближення. В цьому випадку для визначення границь довірчого інтервалу замість формули (10) в якій коефіцієнт  залежить тільки від імовірності Р, використовується інша формула

                                                      (11)

- коефіцієнт Стьюдента, який залежить не тільки від імовірності Р, але й від кількості спостережень n в серії, його беруть з таблиці.

        p

n

0,5

0,6

0,7

0,8

0,9

0,95

0,98

0,999

2

1,00

1,38

2,0

3,1

6,3

12,7

31,8

636,6

3

0,82

1,06

1,3

1,9

2,9

4,3

7,0

31,6

4

0,77

0,98

1,3

1,6

2,4

3,2

4,5

12,9

5

0,74

0,94

1,2

1,5

2,1

2,8

3,7

8,6

6

0,73

0,92

1,2

1,5

2,0

2,6

3,4

6,9

7

0,72

0,90

1,1

1,4

1,9

2,4

3,1

6,0

8

0,71

0,90

1,1

1,4

1,9

2,4

3,0

5,4

9

0,71

0,90

1,1

1,4

1,9

2,3

2,9

5,0

10

0,70

0,88

1,1

1,4

1,8

2,3

2,8

4,8

0,67

0,84

1,0

1,3

1,6

2,0

2,3

3,3

Середньо квадратична похибка результату при кінцевій кількості спостережень (вимірювань) оцінюється за формулою

                                           (12)

Обробка результатів непрямих вимірювань

При непрямих вимірюваннях фізичної величини а її значення визначається за функціональною залежністю між нею та величинами аргументів, значення яких знайдене в результаті прямих вимірювань, тобто . Метод оцінки величини a та похибки її вимірювання наступні. Для простоти розглянемо простий випадок, коли величини a є функцією одного аргументу:

                                                  (13)

Розглянемо цю функцію поблизу  в межах інтервалу , де  - оцінка величини х, а  - похибка її вимірювання. Розкладемо функцію в ряд Тейлора, тобто представимо її у вигляді багаточлена:

,      (14)

де  - похідна n – го порядку в точці . Враховуючи, що похибка вимірювання величини х є малою величиною, зберігають лише члени першого порядку. Тоді:

                                 (15)

Доданок із (15) є оцінкою значення величини а, тобто

,

де  - визначається з формулою

                                                      (16)

Другий доданок в (15) визначає похибку вимірювання величини а

,                                               (17)

де . Враховуючи, що похибка величини х може бути як із знаком “+”, так і з “-“, рівняння (17) записують у вигляді

                                          (18)

У загальному випадку , де , де і=1, 2,…, к

Якщо похибки вимірювання величини  мають лише випадковий характер, то абсолютна похибка вимірювання величини а визначається за формулою

,

де  - частинні похідні при , а  - похибки вимірювання величини .

Результат непрямого вимірювання представляється у вигляді

Якщо вимірювана величина є функцією кількох змінних, похибки яких порівняно невеликі, то похибка непрямого вимірювання може бути визначена на основі формул таблиці. При цьому розраховують стандартну похибку  з довірчим інтервалом  та довірчою імовірністю 68%.


x

0

0

f(Δx)

Δx


 

А также другие работы, которые могут Вас заинтересовать

3050. Основы акушерской и гинекологической помощи 1.15 MB
  ЛЕКЦИЯ Организация акушерской и гинекологической помощи в России Материнская смертность (является ведущим показателем)  рассчитывается на 100 000 живорожденных В 1992 г. в России  она составила 56-60, в Ставропольском крае – ...
3051. Програмування в MathCad. Організація обчислень з розгалуженнями 236 KB
  Програмування в MathCad. Організація обчислень з розгалуженнями. Алгоритми і програми циклічної структури. Обробка елементів одновимірного та двовимірного масивів. Теоретичні відомості Для вставки програмного...
3052. Создание с помощью СУБД Access базы данных виртуального магазина 2.12 MB
  Введение Процесс решения любой задачи на компьютере представляет собой обработку данных по заданному алгоритму. Данными могут быть: числа, буквы, слова, фамилии и телефоны, показатели работы предприятия и др. Продолжительное время для решения каждой...
3053. Розв’язування задачі Коші для звичайних диференціальних рівнянь в середовищі системи MathCad 199.5 KB
  Розв’язування задачі Коші для звичайних диференціальних рівнянь в середовищі системи MathCad. Теоретичні відомості Диференціальні рівняння першого порядку можуть, за означенням, містити, крім шуканої функції, тільки її першу похідну. В біль...
3054. Обробка даних вимірювань. Апроксимація та інтерполяція даних 188 KB
  Обробка даних вимірювань. Апроксимація та інтерполяція даних. Мета: Вивчити процедури для апроксимації та інтерполяції даних в системі MathCad. Завдання. Побудувати апроксимаційний поліном 1-го степеня за методом найменших квадратів. Значення...
3055. Використання ранжованих змінних 79 KB
  Використання ранжованих змінних Табулювання функцій та побудова їх графіків. Розв’язання нелінійних рівнянь та їх систем засобами MathCad. Теоретичні відомості Ранжовані зміні - це клас змінних, що у MathCad замінюють управляючу структуру...
3056. Аналітичні обчислення. Спрощення арифметичних виразів 140 KB
  Аналітичні обчислення. Спрощення арифметичних виразів Обчислення похідної, первісної. Обчислення означеного інтегралу. Обчислення границь. Аналітичний розв’язок рівнянь та систем лінійних алгебричних рівнянь. Обчислення найпростіших сум та добу...
3057. Настройка горизонтального оптиметра и измерение наружного диаметра подшипника качения 45 KB
  Настройка горизонтального оптиметра и измерение наружного диаметра подшипника качения. Цель работы: Определить класс точности наружного кольца подшипника. Эскиз. Основные данные об измерительных приборах. Наименование прибора Цена деления прибора. П...
3058. Измерение линейных и диаметральных размеров деталей прямым относительным методом 43.5 KB
  Измерение линейных и диаметральных размеров деталей прямым относительным методом. Цель работы: Ознакомится с практическими навыками при измерении размеров прямым относительным методом. Получить представления об устройстве и процессе измерения при по...