4125

Обробка результатів вимірювань при виконанні лабораторних робіт з курсу Фізика

Лабораторная работа

Физика

Обробка результатів вимірювань при виконанні лабораторних робіт з курсу Фізика Вимірювання фізичних величин є метою кожної лабораторної роботи з фізики. Вимірювання – це процес порівняння фізичної величини з іншою, якає є однорідною з нею, і як...

Украинкский

2012-11-13

126 KB

7 чел.

Обробка результатів вимірювань при виконанні лабораторних робіт з курсу Фізика

Вимірювання фізичних величин є метою кожної лабораторної роботи з фізики. Вимірювання – це процес порівняння фізичної величини з іншою, якає є однорідною з нею, і яка прийнята за одиницю вимірювання. При цьому розрізняють прямі та непрямі вимірювання.

Виміряти фізичну величину (ФВ)  це значить знайти дослідним шляхом значення фізичної величини, використовуючи технічні засоби. Вимірювання поділяються на прямі та непрямі. Прямі вимірювання отримуються шляхом безпосерднього спостереження за мірою або приладом. Непрямі вимірювання отримуюмуються шляхом розв’язування рівнянь.

Результати вимірювань ФВ, наприклад, в лабораторії завжди є не абсолютно точними, а наближеними. Точність вимірювань залежить від багатьох факторів. Мірою точності вимірювань є похибка. Похибки вимірювань можна класифікувати по-різному. Наприклад: похибки методу вимірювань, інструментальні похибки, похибки через зовнішні впливи на засоби і об’єкти вимірювань, похибки відліку, суб’єктивні похибки. В основному похибка складається з інструментальної похибки та похибки відліку.

Похибки поділяються також на абсолютні та відносні.

Абсолютна похибка ФВ х - це іменоване число, яке показує межі вимірюваної ФВ.

Абсолютна похибка  визначається різницею між істинним та наближеним значеннями вимірюваної ФВ.

Відносна похибка – це відношення абсолютної похибки вимірювання до істинного значення вимірюваної величини. Відносна похибка вимірюється у відсотках, використовується для порівняння якості вимірювань різнорідних величин.

Існують різні методи визначення величин похибок.

Метод середнього арифметичного

Метод середнього арифметичного застосовується при прямих вимірюваннях, коли похибка вимірювального приладу менша похибки відліку.

Найбільше до істинного значення вимірюваної ФВ наближається її середнє арифметичне значення. Нехай маємо n прямих вимірювань ФВ х:

.

  1.  Визначається середнє арифметичне ФВ х

                                             (1)

Примітка. При кінцевому числі n величина  називається виборочним середнім або середнім вибірки.

  1.  Визначається абсолютна похибка кожного вимірювання

  1.  Обчислюється середня абсолютна похибка

                                         (2)

  1.  Обчислюється відносна похибка

                                                   (3)

Якщо в процесі багатократних вимірювань вимірювальний прилад дає однакові покази, то за максимальну абсолютну похибку приймають похибку вимірювального приладу або ціну поділки шкали приладу.

  1.  Записується результат вимірювання

                                                    (4)

Статистичний метод

Похибки також поділяються на систематичні, випадкові, промахи. Систематичні похибки та промахи можна звести до мінімального значення, наприклад до нуля. Випадкові похибки - це похибки, які в однакових умовах мають різні значення. Випадкові похибки не можна звести до нуля, можна лише зменшити їхню величину шляхом збільшення кількості вимірювань в ідентичних умовах. Випадкові похибки досліджуються в теорії імовірностей. Похибки відліку при зніманні показів мір або вимірювальних приладів оком людини також можна обробляти статистичним методом.

Закон нормального розподілу випадкових похибок та статистична обробка при нормальному розподілі результатів спостережень

Нехай маємо n (100) вимірювань ФВ х(). Обчислимо середнє арифметичне ФВ х -  і знайдемо абсолютні похибки . Розглянемо величини цих випадкових похибок і розділимо їх на певні інтервали, враховуючи їхній знак. Побудуємо гістограму. Для цього по осі ОХ відкладатимемо величини похибок, а по осі ОY кількість похибок які потрапляють в цей інтервал.


Якщо кількість вимірювань збільшувати (), а величину інтервалу зменшувати, то гістограма наближатимеся до плавної кривої, яка має форму кривої Гаусса (нормальний розподіл Гаусса або розподіл густини імовірностей). Аналітичний вигляд кривої Гаусса є

                                           (5)

– густина імовірності. Вона дозволяє визначити імовірність dP появи випадкової похибки в інтервалі похибок d(Δx) за формулою

,

а імовірність появи випадкової похибки в кінцевому інтервалі значень [Δx1, Δx2] буде дорівнювати

                                               (6)

Δx - абсолютна випадкова похибка результату спостереження, коли систематична похибка повністю виключена, параметр σ називається дисперсією і характеризує розкид значень випадкової похибки відносно нульового значення. Квадратний корінь з дисперсії називається середньо квадратичним відхиленням (середньо квадратичною похибкою). Параметр σ зручно використовувати для оцінки якості проведених спостережень. Так, якщо його значення взяти в якості границь випадкової похибки результату спостереження, то за формулою (6) імовірність Р1 того, що похибка результату спостереження перебуває в межах [-σ, +σ], дорівнює

                            (7)

Аналогічно можна отримати імовірність появи похибки реультату спостереження в межах інтервалу [-2σ, +2σ] – вона дорівнює 0,95, а в межах інтервалу [-3 σ, +3 σ] – 0,99. Це означає , що з серії спостережень, кількість яких прийнято за 100%, для 68% з них випадкова похибка не вийде за межі , у 95% - за межі 95 % , а для 99% - за межі . Тобто , параметр σ дозволяє визначити границі інтервалу випадкової похибки з деякою імовірністю. Середньо квадратичну похибку називають ще стандартною похибкою. Середньо квадратична стандартна похибка визначається за формулою

                                              (8)

Формула (8) дає дещо занижене значення дисперсії, бо  відрізняється від істинного значення вимірюваної величини, тому оцінка середньо квадратичної (стандартної) похибки проводиться на основі дослідних даних за формулою

                                          (9)

Верхня та нижня границі інтервалу, що покриває з заданою імовірністю похибку вимірювання, називаються довірчими границями похибки, інтервал – довірчим, а імовірність, що його характеризує – довірчою імовірністю. Границі довірчого інтервалу визначаються за формулою

                                                   (10)

Для довірчого інтервалу 68%  (для значень  є таблиці).

Таким чином, результатом вимірювання ФВ є середнє арифметичне результатів спостережень та довірчий інтервал випадкової похибки.

При кінцевій кількості спостережень (вимірювань) розподіл Гаусса застосовується з певним ступенем наближення. В цьому випадку для визначення границь довірчого інтервалу замість формули (10) в якій коефіцієнт  залежить тільки від імовірності Р, використовується інша формула

                                                      (11)

- коефіцієнт Стьюдента, який залежить не тільки від імовірності Р, але й від кількості спостережень n в серії, його беруть з таблиці.

        p

n

0,5

0,6

0,7

0,8

0,9

0,95

0,98

0,999

2

1,00

1,38

2,0

3,1

6,3

12,7

31,8

636,6

3

0,82

1,06

1,3

1,9

2,9

4,3

7,0

31,6

4

0,77

0,98

1,3

1,6

2,4

3,2

4,5

12,9

5

0,74

0,94

1,2

1,5

2,1

2,8

3,7

8,6

6

0,73

0,92

1,2

1,5

2,0

2,6

3,4

6,9

7

0,72

0,90

1,1

1,4

1,9

2,4

3,1

6,0

8

0,71

0,90

1,1

1,4

1,9

2,4

3,0

5,4

9

0,71

0,90

1,1

1,4

1,9

2,3

2,9

5,0

10

0,70

0,88

1,1

1,4

1,8

2,3

2,8

4,8

0,67

0,84

1,0

1,3

1,6

2,0

2,3

3,3

Середньо квадратична похибка результату при кінцевій кількості спостережень (вимірювань) оцінюється за формулою

                                           (12)

Обробка результатів непрямих вимірювань

При непрямих вимірюваннях фізичної величини а її значення визначається за функціональною залежністю між нею та величинами аргументів, значення яких знайдене в результаті прямих вимірювань, тобто . Метод оцінки величини a та похибки її вимірювання наступні. Для простоти розглянемо простий випадок, коли величини a є функцією одного аргументу:

                                                  (13)

Розглянемо цю функцію поблизу  в межах інтервалу , де  - оцінка величини х, а  - похибка її вимірювання. Розкладемо функцію в ряд Тейлора, тобто представимо її у вигляді багаточлена:

,      (14)

де  - похідна n – го порядку в точці . Враховуючи, що похибка вимірювання величини х є малою величиною, зберігають лише члени першого порядку. Тоді:

                                 (15)

Доданок із (15) є оцінкою значення величини а, тобто

,

де  - визначається з формулою

                                                      (16)

Другий доданок в (15) визначає похибку вимірювання величини а

,                                               (17)

де . Враховуючи, що похибка величини х може бути як із знаком “+”, так і з “-“, рівняння (17) записують у вигляді

                                          (18)

У загальному випадку , де , де і=1, 2,…, к

Якщо похибки вимірювання величини  мають лише випадковий характер, то абсолютна похибка вимірювання величини а визначається за формулою

,

де  - частинні похідні при , а  - похибки вимірювання величини .

Результат непрямого вимірювання представляється у вигляді

Якщо вимірювана величина є функцією кількох змінних, похибки яких порівняно невеликі, то похибка непрямого вимірювання може бути визначена на основі формул таблиці. При цьому розраховують стандартну похибку  з довірчим інтервалом  та довірчою імовірністю 68%.


x

0

0

f(Δx)

Δx


 

А также другие работы, которые могут Вас заинтересовать

57852. Уравнения. Угол. Многоугольники 48.5 KB
  Ожидаемые результаты: учащиеся должны решать уравнения на основе зависимости между компонентами при сложении и вычитании; уметь распознавать углы биссектрису угла строить углы с помощью транспортира решать задачи с помощью полученных знаний об углах...
57853. Дихання. Значення дихання. Органи дихання 211 KB
  Формувати знання та поняття у учнів про дихальну систему людини; ознайомити із диханням як процесом необхідним для життя; показати особливості та взаємозвязок будови та функцій органів дихання; розглянути складові частини системи...
57854. Половое размножение. Строение и разнообразие цветков 56 KB
  Разнообразием и классификацией цветков и растений в зависимости от строения цветка; симметрией цветков. Концепция: дать определение цветка. Рассмотреть строение цветка и функции отдельных элементов.
57855. Расселение растений в природе. Взаимодействие растений, грибов, бактерий и их роль в экосистемах 38 KB
  Мотивация учебной деятельности: А Проблемный вопрос: Почему необходимо изучать влияние факторов среды на организмы Анализ схемы Антропогенные нагрузки на экосистемы...
57856. Способи розмноження рослин 179.5 KB
  Основні поняття і терміни: нестатеве вегетативне статеве розмноження спора гамета сперматозоїд яйцеклітина зигота гаплоїдний і диплоїдний набір хромосом мітоз мейоз.
57857. Значення сенсорних систем в психології та медицині 93.5 KB
  Цілі та завдання: узагальнити знання про будову сенсорних систем принцип структури та функції аналізаторів; з‘ясувати значення органів чуття для психології та медицини формувати науковий світогляд виховувати в учнів культуру здоров‘я як складову загальної культури людини.
57858. Дослідження різних видів пам’яті 121 KB
  Мета: ознайомити з основними видами пам’яті; розкрити фізіологічний механізм пам’яті; поглибити знання учнів про шкідливий вплив алкоголю, нікотину, наркотичних речовин на пам’ять; усвідомити можливість розвитку пам’яті.
57859. Різноманітність грибів, їх роль у природі, житті та господарській діяльності людини 183.5 KB
  Мета уроку: познайомити учнів з різноманітністю грибів показати їх роль в природі житті та господарській діяльності людини; вчити дітей розпізнавати різні гриби розвивати навички роботи з додатковою літературою...
57860. Характеристика класу Однодольні. Рослини родини Злакові 161 KB
  Мета. Охарактеризувати рослини класу Однодольні продовжити формування в учнів навичок складання порівняльної характеристики спрямувати пізнавальну активність учнів на вивчення рослин родини Злакові зясувати їх практичне використання людиною.