41255

Визначення концентрації іонів водню в розчинах кислот, основ і солей. Буферні розчини

Лекция

Химия и фармакология

Так для 003н розчинуHCl знаходимо pН= . Слабкі кислоти Для кислоти складу НА константа дисоціації дорівнює але Cкисл =[HА] і [H]= [А] тому Зручно користовуватися величиною рКкисл= lg Ккисл Приклад: Багатоосновні кислоти Розглядаємо константи ступінчатої дисоціації наприклад вугільної карбонатної кислоти: Н2СО3 Н НСО3 НСО3 Н СО32 рК1=65 рК2=102 Отже друга константа дисоціації в 5000 раз менша першої тому друга ступінь дисоціації не має практичного впливу на величину...

Украинкский

2013-10-23

95.5 KB

1 чел.

Лекція 16

Визначення концентрації іонів водню в розчинах кислот, основ і солей. Буферні розчини.


Визначення концентрації іонів водню в розчинах кислот, основ і солей. Буферні розчини.

План.

  1.  Значення визначення концентрації водневих іонів в хімії та інших науках.
  2.  Розчини кислот.
  3.  Розчини основ.
  4.  Розчини солей.
  5.  Буферні розчини.
  6.  
    Значення визначення концентрації водневих іонів в хімії та інших науках.

Визначення концентрації водневих іонів має дуже велике начення в різних галузях хімії, технології, грунтознавства, геології, біохімії, медицини та інших наук. Утворення і розчинення більшої частини осадів, як, наприклад, гідроксидів, сульфатів, карбонатів, фосфптів залежить від концентрації водневих іонів. Багато процесів окиснення і відновлення як неорганічних, так і органічних речовин (в т. ч. біохімічні  процеси) змінюють свій напрям на протилежний в залежнасті від зміни кислотності або лужності середовища. У виробництві соди та інщих мінеральних солей, флотаційному збагаченні руд, в харчовій промисловості, виробництві шкір, фарбуванні тканин і в безлічі інших випадків для правильної науково-обгрунтованої постановки технологічного процесу, необхідно враховувати вплив концентрації водневих іонів і вміти її визначити.

Особливо важливим є визначення концентрації водневих іонів в об’ємному аналізі, зокрема методі нейтралізації, який базується на кислотно-основних рівновагах.

Загальновідомо, що зручною величиною для визначення концентрації є        pH–водневий показник:

pH=-lg[H+]

Розглянемо, як розраовуєтьсяя pH для різних кислот і основ, а також солей і буферних розчинів.

  1.  Розчини кислот.
    1.   Сильні кислоти повністю дисоціюють у розведених розчинах. Тому можна прийняти, що

[H+]=Cкисл.

рН= -lg Cкисл.

Так, для 0,03н розчинуHCl знаходимо

pН= .

  1.  Слабкі кислоти

Для кислоти складу НА константа дисоціації дорівнює

, але

Cкисл =[HА] і [H+]= [А-], тому

Зручно користовуватися величиною рКкисл= -lg Ккисл

Приклад:

  1.  Багатоосновні кислоти

Розглядаємо константи ступінчатої дисоціації, наприклад, вугільної (карбонатної) кислоти:

Н2СО3         Н++ НСО3-

НСО3-                Н++ СО32-

(рК1=6,5)

(рК2=10,2)

Отже, друга константа дисоціації в 5000 раз менша першої, тому друга ступінь дисоціації не має практичного впливу на величину рН розчину слабкої кислоти. Крім того, слід мати на увазі, що концетрація  дуже мала. Тому, наприклад, для 0,01н розчину карбонатної кислоти знаходимо

  1.  Розчини основ.

Для визначення рН основ користуємось відомим співвідношенням:

рН+рОН=14 рН=14-рОН

Що стасується рОН, то він обчислюється абсолютно аналогічно розрахунку рН. Це видно з наступних прикладів:

  1.  Оючислити рН 0,002н розчину NaOH

pОH= -lgH-]= -lg Cкисл= -lg = -0,3+3= 2,7

рН=14-рОН=14-2,7=11,3

  1.  Оючислити рН 0,5н NaOH Косн=

рК=

рН=14-2,5=11,5

  1.  Розчини солей.

Вивід формул, для розрахунку рН розчинів солей є досить складною і довготривалою справою. Тому наводимо кінцеві формули для деяких видів.

  1.  Солі слабких кислот і сильних основ

Приклад: обчислити рН 0,1м розчину оцтовокислого натрію.

  1.  Аналогічно обчислюється рН розчинів солі утворених сильними кислотами і слабкими основами
    1.  Середні солі багатоосновних кислот

Формула подібна до попередньої, однак, слід пам’ятати, що треба підставляти константи дисоціації останнього ступення дисоціації.

Приклад: обчислити рН 0,5м розчину Na3PO4

Із довідника вибираємо для ортофосфорної кислоти рК1=2.1, рК2=7.2, рК3=12.3 і користуємось останньою величиною.

  1.  Кислі солі

Концентрація водневих іонів в розчині кислої солі залежить від обох констант дисоціації двохосновної кислоти і мало залежить (в певних межах) від Cкисл. Тому формула має вигляд

Приклади:

  1.  обчислити рН 0,5м розчину гідрокарбонату натрію.

З таблиць знаходимо для Н2СО3 рК1= 6.5 і рК2=10.2

(реакція розчину лужна)

  1.  обчислити рН 0,5м розчину гідросульфату натрію

З таблиць знаходимо для Н2SО3 рК1=1.8 і рК2=7.2

(реакція розчину кисла)

  1.  Буферні розчини (буферні суміші).

У різних галузях хімії і технології велике значення мають буферні суміші. Здебільшого вони уявляють собою суміш розчинів слабких кислот з розчинами солей слабких кислот або слбких основ з їх солями.

Для кількісного аналізу вони уявляють інтерес тому, що при титруванні слабких кислот (основ) та їх солей в процесі нейтралізації утворюється розчин, який містить частину солі цієї кислоти (основи) та залишок вільної кислоти (основи).

Буферні розчини використовуються також для визначення рН (наприклад, градуювання рН-метрів ), а також у якості середовища з постійним значенням рН при експерементальній розробці проблем хімії, біохіії тощо.

Для розрахунку рН буферного розчину скористаємось виразом константи дисоціації вільної слабкої кислоти

Проте у присутності соллі КА різко збільшується [А-]. Можно прийняти що

[А-]= Cсолі  [НА]= Cкисл.

Отже:

-lg[H+]=- - lg Cкисл- lg Kкисл. + lg Cсoлi..

Тобто

З формули видно, що рН буферних розчинів не залежить від абсолютних концентрацій солі і кислоти, а залежить тільки від їх співвідношення.

Тому рН буферного розчину не змінюєьбся при його розведенні. Якщо прилити буферну суміш до якогось розчину, який не містить власних власних кількостей інщих кислот, основ або сильногідралізованих солей, рН цього розчину буде відповідати рН буферної суміші.

Приклад: обчислити рН суміші 0.03н оцтової кислоти і 0.1н розчину ацетату натрію. Для СН3СООН рК=4.8

Якщо розвести розчин в 10 раз , то рН розчину не зміниться, що видно з розрахунку

.


 

А также другие работы, которые могут Вас заинтересовать

28181. Лазеры. Принципиальная схема лазера. Основные структурные элементы лазера и их назначение. Типы лазеров. Основные характеристики лазеров 181 KB
  Каждому радиационному переходу между энергетическими уровнями и в спектре соответствует спектральная линия характеризующаяся частотой и некоторой энергетической характеристикой излучения испущенного для спектров испускания поглощенного для спектров поглощения или рассеянного для спектров рассеяния атомной системой. При этом распространение излучения в среде обязательно сопровождается уменьшением его интенсивности выполняется закон Бугера где интенсивность излучения вошедшего в вещество d толщина слоя коэффициент...
28182. Оптика движущихся сред. Эффект Доплера. Поперечный и продольный эффект Доплера 194 KB
  Он гласит: все физические законы независимы инвариантны по отношению к выбору инерциальной системы отсчёта. Это означает что уравнения выражающие законы физики имеют одинаковую форму во всех инерциальных системах отсчёта. Поэтому на основе любых физических экспериментов нельзя выбрать из множества инерциальных систем отсчёта какуюто главную абсолютную систему отсчёта обладающую какимилибо качественными отличиями от других инерциальных систем отсчёта. Она одинакова во всех направлениях в пространстве и во всех инерциальных системах...
28183. Поляризация света. Способы получения поляризованного света. Закон Малюса. Поляризационные призмы 238.5 KB
  Явление поляризации света было открыто Эразмусом Бартолинусом, датским учёным, в 1669 году. В своих опытах Бартолинус использовал кристаллы исландского шпата, имеющие форму ромбоэдра. Если на такой кристалл падает узкий пучок света, то, преломляясь
28184. Распространение света в изотропных средах. Отражение и преломление света на границе между диэлектриками. Основные законы геометрической оптики. Формулы Френеля 146 KB
  При этом падающий отражённый и преломленный лучи лежат в одной плоскости с перпендикуляром восстановленным к границе раздела сред в точке падения О. Углы соответственно углы падения отражения преломления волн. Амплитуду падающей волны разложим на составляющие Ер параллельную плоскости падения и Еs перпендикулярную плоскости падения. Для составляющих вектора Е перпендикулярных плоскости падения рисунок 3 выполняются условия в которых индексы при Е и p при Н опущены: .
28185. Линза как оптическая система. Аберрации линз 126 KB
  На рисунке 1 введены обозначения: a1 расстояние от вершины первой преломляющей поверхности до осевой точки A предмета; a´1 расстояние от вершины первой преломляющей поверхности до изображения A´ получаемого после преломления на ней; a2 расстояние от вершины второй преломляющей поверхности до точки A´; a´2 расстояние от вершины второй преломляющей поверхности до изображения A´´ построенного линзой. Для любой центрированной оптической системы выполняется условие Лагранжа Гельмгольца: ...
28186. Интерференция света. Условия возникновения стационарной интерференции света. Интерференционные схемы с делением волн по фронту (опыт Юнга, зеркало Ллойда, бизеркало Френеля, бипризма Френеля). Влияние размеров источника на интерференционную картину. Усло 159 KB
  Интерференционные схемы с делением волн по фронту опыт Юнга зеркало Ллойда бизеркало Френеля бипризма Френеля. Пусть в точках А и В рисунок 1 находятся два монохроматических источника волны от которых доходят до точки наблюдения С. Взаимное усиление или ослабление двух или большего числа волн при их наложении друг на друга при одновременном распространении в пространстве называется интерференцией волн. Интерференционная картина ИК распределение интенсивностей в области волнового поля где волны налагаются друг на друга.
28187. Интерференционные схемы с делением волн по амплитуде. Интерференция в тонких пленках. Полосы равной толщины и полосы равного наклона. Кольца Ньютона. Применение интерференции света 134 KB
  Пусть на тонкую прозрачную пластинку постоянной толщины рисунок 1 из вакуума падает волна с плоским фронтом ей соответствует пучок параллельных лучей сформированная с помощью точечного источника и линзы в фокусе которой источник находится. Так как условия распространения всех лучей падающих на пластинку в этом опыте одинаковы то для лучей и а также других пар лучей одинаковых с ними по происхождению оптическая разность хода будет одинаковой: 1 где n показатель преломления материала...
28188. Двухлучевые интерферометры. Интерферометры Рэлея, Жамена, Майкельсона, Линника. Многолучевые интерферометры (интерферометр Фабри-Перо, пластинка Люммера-Герке). Интерференционные фильтры 110 KB
  Если зеркало М1 расположено так что М´1 и М2 параллельны образуются полосы равного наклона локализованные в фокальной плоскости объектива О2 и имеющие форму концентрических колец. Если же М1 и М2 образуют воздушный клин то возникают полосы равной толщины локализованные в плоскости клина М2 М1 и представляющие собой параллельные линии. Если поверхность исследуемого образца имеет дефект в виде впадины или выступа высотой l то интерференционные полосы искривляются. Если то интерференционная полоса искривляется так что занимает...
28189. Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция света на круглом отверстии, на круглом препятствии и прямолинейном крае экрана 97.5 KB
  Дифракция света на круглом отверстии на круглом препятствии и прямолинейном крае экрана Дифракция волн от лат. diffractus разломанный преломлённый в первоначальном узком смысле огибание волнами препятствий. В современном более широком смысле под дифракцией понимают любое отклонение от законов геометрической оптики при распространении волн. При таком общем толковании дифракция волн переплетается с явлениями распространения и рассеяния волн в неоднородных средах.