41264

Аналіз проходження сигналів через лінійні електричні кола методом інтегралу Дюамеля

Лекция

Физика

При малій тривалості Δτ реакція ланцюга на кожен імпульс fвх kt відповідно до формули 18.3 визначається за допомогою її імпульсної характеристики як добуток: fвых kt= tτSиk = tτ fвх τΔτ.8 Реакцію ланцюга на вплив fвх t відповідно до принципу накладення: знайдемо як суму реакцій fвых kt n τ=nΔt fвых t= Σ fвых kt= Σ fвхτtτΔτ.9 k=0 τ=0...

Украинкский

2013-10-23

116.5 KB

9 чел.

6

Аналіз проходження   сигналів через лінійні  електричні  кола                       методом інтегралу Дюамеля

     В основі розрахунку реакції лінійного ланцюга на вплив довільної форми з використанням її тимчасових характеристик лежить принцип накладення. Суть такого методу розрахунку полягає  в представленні  вхідного

Рис. 18.1

впливу сумою   (накладенням) простих типових імпульсних функцій.

Представимо вхідний сигнал довільної форми накладенням прямокутних

ім

пульсів                 

імпульсів малої тривалості tи=Δτ =Δt (мал. 18.1).

При малій тривалості Δτ реакція ланцюга на кожен імпульс fвх k(t) відповідно до формули (18.3) визначається за допомогою її імпульсної характеристики як добуток:

 fвых k(t)= a(t-τ)Sиk = a(t-τ) fвх (τ)Δτ.                                          (18.8)

Реакцію ланцюга на вплив  fвх (t) відповідно до принципу накладення:

знайдемо як суму реакцій  fвых k(t)

              n                          τ=nΔt

 fвых (t)= Σ fвых k(t)= Σ fвх(τ)a(t-τ)Δτ.                                          (18.9)

                      k=0                          τ=0

Спрямовуючи Δτ→0, у межі одержуємо

                      t

fвых (t)= ∫ fвх(τ)a(t-τ)dτ = fвх(t) * a(t) .                                       (18.10)

                     0

або після заміни перемінних

                       t

fвых (t)= ∫ fвх(t-τ)a(τ)dτ = fвх(t) * a(t).                                        (18.11)

     Тут інтегрування виробляється по τ, а під t розуміють фіксований момент часу, у який потрібно знайти значення fвых (t).

     Отримані вираження називаються інтегралами згортки. Вони дозволяють знайти реакцію лінійного ланцюга на довільний вплив як згорткові вхідного впливу з імпульсної характеристики ланцюга. Подібні вираження можна одержати і при апроксимації функції впливу за допомогою східчастих функцій, розглянутих у минулій лекції.

     Інтегралові згортки можна дати графічну інтерпретацію. Для цього послідовність згортання двох функцій проілюструємо за допомогою мал. 18.2. функції, Що Згортаються, (мал. 18.2, а) після заміни перемінної t на (рис, 18.2, б) перетворимо шляхом заміни , на (-). Таке перетворення (мал. 18.2, в) відповідає дзеркальному відображенню функцій щодо осі ординат. Наступна заміна (-) на (t-) відповідає зсувові відбитих функцій вправо на величину t (мал. 18.2,г). Добуток двох функцій, що знаходиться під знаком інтеграла в згортку (18.10) і (18.11), представлене на мал. 18.2,д. Інтегрування перемножених функцій дає значення інтеграла згортки в даний момент часу (мал. 18.2,е). Ордината результуючій кривій (див. мал. 18.2, е) відповідає площі заштрихованої -поверхні (див. рис, 18.2, д). Для перебування кожної нової ординати потрібне нове відображення і зсув, після чого виконується перемножування ординат і інтегрування.

     Таким чином, згортання двох функцій може бути представлене за допомогою чотирьох дій — відображення, зсуву, перемножування й інтегрування, виконуваних у визначеній послідовності.

     Якщо підставити в інтеграли (18.10) і (18.11) вираження (18.4) і використовувати заміну перемінних, то одержимо ще двох форм інтеграла згортки

які в теорії ланцюгів звичайно називають інтегралами Дюамеля: 


                

     Інтегруючи в (18.10) і (18.11) вроздріб (udv = uv — vdu) одержуємо ще двох форм (третього і четверту)  інтеграла Дюамеля:                        -

                                                                                                             t

                         fвых (t) = fвх(0) h (t) +  fвх(t-) h () d.                        (18.14)

                                                                                                        0

                                                                                                             t

                         fвых (t) = fвх(0) h (t) +  fвх() h (t - ) d.                      (18.15)

                                                                                                        0

тому що

Диференціюючи визначений інтеграл   (18.10)   і  (18.11)  по

верхній межі     

                                      

одержуємо п'яту і шосту форми інтеграла Дюамеля:

                                                                                                                  t

                                          fвых (t) = d/dt  fвх(t-) h () d.                    (18.16)

                                                                                                              0

                                                                                                           t

                                     fвых (t) = d/dt  fвх() h (t - ) d.                       (18.17)

                                                                                                      0

     Вибір зручної форми запису інтеграла згортки (Дюамеля) визначається умовою розв'язуваної задачі, видом вхідного впливу і використовуваної тимчасової характеристики ланцюга.

     Розрахунок реакції ланцюга на вплив довільної форми розпадається в загальному випадку на два етапи:

- розрахунок тимчасової характеристики потрібного виду;

- розрахунок реакції ланцюга за допомогою інтеграла згортки (Дюамеля) у будь-якій зручній його формі (18.10) —(18.17).

Інтеграл Дюамеля.

На підставі розгляду динамічної системи  вхідний сигнал представимо  як.

Реакцію ланцюга на такий сигнал запишеться в наступному виді.

Т.ч. система лінійна і стаціонарна, те оператор системи  можна внести під знак інтеграла.

На основі властивостей згортки даний вираз можна записати у вигляді.

Приведені два вирази звуться інтеграла Дюамеля. Інтеграл Дюамеля дозволяє обчислити реакцію ланцюга на будь-який зовнішній вплив шляхом зваженого підсумовування вхідного сигналу. Ваговими коефіцієнтами для миттєвого значення сигналу є значення імпульсної характеристики.

      Умови фізичної реалізуємості імпульсної характеристики.

  1.  Вихідний сигнал, що відповідає, або є реакцієя на вхідний імпульсний вплив не може з'явитися  до моменту появи сигналу на вході.

 

З даної умови випливають обмеження, що накладаються на інтеграл Дюамеля: межі інтегрування не до , а до часу .

Вираз (1) показує, що лінійна стаціонарна система виконує обробку сигналу, що надходить на вхід, виконуючи операцію зваженого підсумовування для всіх миттєвих значень сигналу, що існували    до початку обробки в інтервалі . Роль вагових коефіцієнтів грає ІПХ у кожен момент часу .

  1.  ІПХ повинна бути стаціонарна (тому що система повинна бути стаціонарна.), тобто  оператор системи не повинний залежати від часу.

Дані умови називаються стійкістю імпульсної характеристики. Т.ч. імпульсна характеристика повинна підкорятися умові повної інтеграції.

Імпульсна і перехідна характеристика.

ЇХ є реакцією на зовнішній вплив, при тому, що зовнішнім впливом була -функція.

                                   (5)

Дане вираження розглядаємо для стаціонарної системи.

Тоді.

                (6)

Дана форма запису ідеалізована, тому що реальні системи можуть тільки приблизно створити імпульс з одиничною площею і тривалістю прагнучої до нуля. Реальний імпульс можна вважати -функцією, якщо його тривалість досить мала в порівнянні з тривалістю комплексної підлягаючій обробці обгинає, що сигналу.

Перехідна характеристика. Нехай на вході лінійної стаціонарної системи діє сигнал, зображуваний функцією Хевісайда σ(t).

                  0,       t< to ,    

σ(t-to)=       0,5     t= to

                   1       t> to

Вихідну реакцію

          g (t)= T σ(t)                                  (6)

прийнято називати перехідною характеристикою системи. Оскільки розглянута система стаціонарна, те перехідна характеристика інваріантна щодо тимчасового зрушення:

 g (t- to) =T σ(t-to).                                    (7)

Висловлені раніше розуміння про фізичнуe реалізацію системи цілком переносяться на той випадок, коли система збуджується не дельта-функцією, а одиничним стрибком. Тому перехідна характеристика фізично реалізованої системи відмінна від нуля лише при t>0, у той час як

g (t)=0   при   t<0.

Між імпульсною і перехідною характеристиками існує тісний зв'язок. Дійсно, оскільки δ(t) = dσ/dt, то на підставі (5)

                              h(t) = T[d/dt σ(t)].                                (8)

Оператор диференціювання d/dt і лінійний стаціонарний оператор T можуть мінятися місцями, і тому

                                               h(t) =d/dt σ(t) = dg /dt .                     (9)

або

                                   g(t)= ∫h(ξ)dξ                                   (10)



 

А также другие работы, которые могут Вас заинтересовать

54357. Возникновение и ранние формы славянской культуры. Формирование культуры восточных славян и ее особенности 23.94 KB
  Начало процесса обособления славян из древней индоевропейской общности относят к II тыс. до н.э. В греческих, римских, арабских, византийских источниках начала нашей эры славяне упоминаются под именами венедов, антов, склавинов
54359. Межпредметные связи на уроках технологии 298.5 KB
  Почва верхний слой земли на которой растут растения. Разработка почвы как один из приемов повышения урожайности культур. Виды обработки почвы вспашка плугом перекопка лопатой. Плодородие почвы повышается при правильной ее обработке и внесении удобрений.
54360. SQL Server 2000. Система управления реляционными базами данных и анализа данных 908.5 KB
  Microsoft SQL Server 2000 является законченным решением в области управления базами данных и анализа данных, предназначенным для быстрого создания масштабируемых веб-приложений следующего поколения. Являясь базовым компонентом семейства. NET Enterprise Servers, он значительно ускоряет выпуск приложений электронной коммерции, бизнес-приложений и хранилищ данных, в то же время обеспечивая уровень масштабируемости...
54361. Робота з базою даних в програмі Microsoft Access. Створення форм 955.5 KB
  Мета уроку: навчитись проектуванню баз даних; оформлювати форми додавання в форму елементів керування; введення в форму даних; створення підпорядкованої таблиці в формі; використання проектних технологій у побудові форм; придбання практичних навичок створення форм; формувати навички свідомого планування своєї навчальної діяльності; розвивати: логічне та образного мислення; самостійність у засвоєнні навчального матеріалу; виховувати: впевненість у своїх силах колективізм; естетичність у оформленні форми;...
54362. Мифы Древней Греции. Верования древних греков 40 KB
  Цель: расширить кругозор учащихся; познакомить их с Грецией; рассказать о возникновении древнегреческих мифов, отражении в них представлений греков об окружающем их мире; стимулировать познавательный процесс, развивать коммуникативные способности учащихся; раскрыть потенциальные возможности детей; развивать творческие способности и интерес к литературе; воспитывать у учащихся инициативность в построении совместной учебной деятельности; формировать умение работать в группе.
54363. Мифы Древней Греции. Верования древних греков. Интегрированный урок 4.81 MB
  Мы предлагаем конспект интегрированного урока с использованием информационных и мультимедийных технологий на уроках литературы в 6 классе по теме Мифы Древней Греции. Овладеть знаниями о мифах Древней Греции не посетив страну пусть даже виртуально весьма трудно. Как же можно построить уроки по изучению мифов Древней Греции с использованием информационных и компьютерных технологий По программе на изучение этого...
54364. Свято – урок «Ой хто, хто Миколая любить» 42.5 KB
  Всі річки тепер в обнові біле скло над бережком Ходить зима по діброві застеляє все сніжком. Сніг сідав на усмішки і сміявся з усіма Бо прийшла до нас зима Пісня Зимонька Сорока. Йшла зимонька поміж полями Усміхнулася до зір...
54365. День Святого Миколая - душа весело співає 158 KB
  Хлопчик Краснії подарунки дітям приносить В кожен дім діти знають: з радістю приходить. Звучить чарівна мелодія зявляються дівчаткаянголи які виконують дивовижний танок сповіщаючи прихід Миколая стук у двері до господи входить Святий Миколай Вчитель Діти а хто до нас прийшов Діти Святий Миколай Св. Добрий день вам любі діти Діти Добрий день Св. Бачу ви усі привітні...