41264

Аналіз проходження сигналів через лінійні електричні кола методом інтегралу Дюамеля

Лекция

Физика

При малій тривалості Δτ реакція ланцюга на кожен імпульс fвх kt відповідно до формули 18.3 визначається за допомогою її імпульсної характеристики як добуток: fвых kt= tτSиk = tτ fвх τΔτ.8 Реакцію ланцюга на вплив fвх t відповідно до принципу накладення: знайдемо як суму реакцій fвых kt n τ=nΔt fвых t= Σ fвых kt= Σ fвхτtτΔτ.9 k=0 τ=0...

Украинкский

2013-10-23

116.5 KB

10 чел.

6

Аналіз проходження   сигналів через лінійні  електричні  кола                       методом інтегралу Дюамеля

     В основі розрахунку реакції лінійного ланцюга на вплив довільної форми з використанням її тимчасових характеристик лежить принцип накладення. Суть такого методу розрахунку полягає  в представленні  вхідного

Рис. 18.1

впливу сумою   (накладенням) простих типових імпульсних функцій.

Представимо вхідний сигнал довільної форми накладенням прямокутних

ім

пульсів                 

імпульсів малої тривалості tи=Δτ =Δt (мал. 18.1).

При малій тривалості Δτ реакція ланцюга на кожен імпульс fвх k(t) відповідно до формули (18.3) визначається за допомогою її імпульсної характеристики як добуток:

 fвых k(t)= a(t-τ)Sиk = a(t-τ) fвх (τ)Δτ.                                          (18.8)

Реакцію ланцюга на вплив  fвх (t) відповідно до принципу накладення:

знайдемо як суму реакцій  fвых k(t)

              n                          τ=nΔt

 fвых (t)= Σ fвых k(t)= Σ fвх(τ)a(t-τ)Δτ.                                          (18.9)

                      k=0                          τ=0

Спрямовуючи Δτ→0, у межі одержуємо

                      t

fвых (t)= ∫ fвх(τ)a(t-τ)dτ = fвх(t) * a(t) .                                       (18.10)

                     0

або після заміни перемінних

                       t

fвых (t)= ∫ fвх(t-τ)a(τ)dτ = fвх(t) * a(t).                                        (18.11)

     Тут інтегрування виробляється по τ, а під t розуміють фіксований момент часу, у який потрібно знайти значення fвых (t).

     Отримані вираження називаються інтегралами згортки. Вони дозволяють знайти реакцію лінійного ланцюга на довільний вплив як згорткові вхідного впливу з імпульсної характеристики ланцюга. Подібні вираження можна одержати і при апроксимації функції впливу за допомогою східчастих функцій, розглянутих у минулій лекції.

     Інтегралові згортки можна дати графічну інтерпретацію. Для цього послідовність згортання двох функцій проілюструємо за допомогою мал. 18.2. функції, Що Згортаються, (мал. 18.2, а) після заміни перемінної t на (рис, 18.2, б) перетворимо шляхом заміни , на (-). Таке перетворення (мал. 18.2, в) відповідає дзеркальному відображенню функцій щодо осі ординат. Наступна заміна (-) на (t-) відповідає зсувові відбитих функцій вправо на величину t (мал. 18.2,г). Добуток двох функцій, що знаходиться під знаком інтеграла в згортку (18.10) і (18.11), представлене на мал. 18.2,д. Інтегрування перемножених функцій дає значення інтеграла згортки в даний момент часу (мал. 18.2,е). Ордината результуючій кривій (див. мал. 18.2, е) відповідає площі заштрихованої -поверхні (див. рис, 18.2, д). Для перебування кожної нової ординати потрібне нове відображення і зсув, після чого виконується перемножування ординат і інтегрування.

     Таким чином, згортання двох функцій може бути представлене за допомогою чотирьох дій — відображення, зсуву, перемножування й інтегрування, виконуваних у визначеній послідовності.

     Якщо підставити в інтеграли (18.10) і (18.11) вираження (18.4) і використовувати заміну перемінних, то одержимо ще двох форм інтеграла згортки

які в теорії ланцюгів звичайно називають інтегралами Дюамеля: 


                

     Інтегруючи в (18.10) і (18.11) вроздріб (udv = uv — vdu) одержуємо ще двох форм (третього і четверту)  інтеграла Дюамеля:                        -

                                                                                                             t

                         fвых (t) = fвх(0) h (t) +  fвх(t-) h () d.                        (18.14)

                                                                                                        0

                                                                                                             t

                         fвых (t) = fвх(0) h (t) +  fвх() h (t - ) d.                      (18.15)

                                                                                                        0

тому що

Диференціюючи визначений інтеграл   (18.10)   і  (18.11)  по

верхній межі     

                                      

одержуємо п'яту і шосту форми інтеграла Дюамеля:

                                                                                                                  t

                                          fвых (t) = d/dt  fвх(t-) h () d.                    (18.16)

                                                                                                              0

                                                                                                           t

                                     fвых (t) = d/dt  fвх() h (t - ) d.                       (18.17)

                                                                                                      0

     Вибір зручної форми запису інтеграла згортки (Дюамеля) визначається умовою розв'язуваної задачі, видом вхідного впливу і використовуваної тимчасової характеристики ланцюга.

     Розрахунок реакції ланцюга на вплив довільної форми розпадається в загальному випадку на два етапи:

- розрахунок тимчасової характеристики потрібного виду;

- розрахунок реакції ланцюга за допомогою інтеграла згортки (Дюамеля) у будь-якій зручній його формі (18.10) —(18.17).

Інтеграл Дюамеля.

На підставі розгляду динамічної системи  вхідний сигнал представимо  як.

Реакцію ланцюга на такий сигнал запишеться в наступному виді.

Т.ч. система лінійна і стаціонарна, те оператор системи  можна внести під знак інтеграла.

На основі властивостей згортки даний вираз можна записати у вигляді.

Приведені два вирази звуться інтеграла Дюамеля. Інтеграл Дюамеля дозволяє обчислити реакцію ланцюга на будь-який зовнішній вплив шляхом зваженого підсумовування вхідного сигналу. Ваговими коефіцієнтами для миттєвого значення сигналу є значення імпульсної характеристики.

      Умови фізичної реалізуємості імпульсної характеристики.

  1.  Вихідний сигнал, що відповідає, або є реакцієя на вхідний імпульсний вплив не може з'явитися  до моменту появи сигналу на вході.

 

З даної умови випливають обмеження, що накладаються на інтеграл Дюамеля: межі інтегрування не до , а до часу .

Вираз (1) показує, що лінійна стаціонарна система виконує обробку сигналу, що надходить на вхід, виконуючи операцію зваженого підсумовування для всіх миттєвих значень сигналу, що існували    до початку обробки в інтервалі . Роль вагових коефіцієнтів грає ІПХ у кожен момент часу .

  1.  ІПХ повинна бути стаціонарна (тому що система повинна бути стаціонарна.), тобто  оператор системи не повинний залежати від часу.

Дані умови називаються стійкістю імпульсної характеристики. Т.ч. імпульсна характеристика повинна підкорятися умові повної інтеграції.

Імпульсна і перехідна характеристика.

ЇХ є реакцією на зовнішній вплив, при тому, що зовнішнім впливом була -функція.

                                   (5)

Дане вираження розглядаємо для стаціонарної системи.

Тоді.

                (6)

Дана форма запису ідеалізована, тому що реальні системи можуть тільки приблизно створити імпульс з одиничною площею і тривалістю прагнучої до нуля. Реальний імпульс можна вважати -функцією, якщо його тривалість досить мала в порівнянні з тривалістю комплексної підлягаючій обробці обгинає, що сигналу.

Перехідна характеристика. Нехай на вході лінійної стаціонарної системи діє сигнал, зображуваний функцією Хевісайда σ(t).

                  0,       t< to ,    

σ(t-to)=       0,5     t= to

                   1       t> to

Вихідну реакцію

          g (t)= T σ(t)                                  (6)

прийнято називати перехідною характеристикою системи. Оскільки розглянута система стаціонарна, те перехідна характеристика інваріантна щодо тимчасового зрушення:

 g (t- to) =T σ(t-to).                                    (7)

Висловлені раніше розуміння про фізичнуe реалізацію системи цілком переносяться на той випадок, коли система збуджується не дельта-функцією, а одиничним стрибком. Тому перехідна характеристика фізично реалізованої системи відмінна від нуля лише при t>0, у той час як

g (t)=0   при   t<0.

Між імпульсною і перехідною характеристиками існує тісний зв'язок. Дійсно, оскільки δ(t) = dσ/dt, то на підставі (5)

                              h(t) = T[d/dt σ(t)].                                (8)

Оператор диференціювання d/dt і лінійний стаціонарний оператор T можуть мінятися місцями, і тому

                                               h(t) =d/dt σ(t) = dg /dt .                     (9)

або

                                   g(t)= ∫h(ξ)dξ                                   (10)



 

А также другие работы, которые могут Вас заинтересовать

82746. НАРОДЖЕННЯ ЗІРОК 122 KB
  Гершель наприклад був абсолютно упевнений що він не тільки знайшов множину хмар дозіркової речовини але навіть власними очима бачить як ця речовина під дією тяжіння поступово змінює свою форму і конденсується в зірки. З одного боку вони зрозуміли що зірки не можуть світити вічно.
82747. Типы ветроэнергетических установок 175.5 KB
  Посадки деревьев вблизи ветряных мельниц запрещались для обеспечения свободного ветра. Основные термины и понятия ветер: движение воздуха относительно земной поверхности вызванное неравномерным распределением атмосферного давления и характеризующееся скоростью и направлением средняя скорость ветра...
82748. ФИЛОСОФИЯ И НАУКА 106 KB
  Связи между наукой и философией фундаментальны. Науку и философию роднит то, что они являются сферами рациональной и доказательной духовной деятельности, ориентированными на достижение истины, которая в ее классическом понимании есть «форма согласования мысли с действительностью».
82749. Тенденции развития и географии маршрутов автобусного туризма 133.5 KB
  Наиболее полно насладиться красотами Европы подробно ознакомиться с историей культурой традициями и обычаями народов Европы дают именно автобусные туры. Автобусные туры предполагают непосредственное погружение в повседневную жизнь и дают возможность лучше почувствовать современный ритм Европы.
82750. Основные свойства и бласть эксплуатации строительного материала 34.48 KB
  Основные свойства строительного материала По составу можно выделить органические минеральные и металлические кровельные материалы. К органическим относятся старейшие кровельные материалы солома дранка и современные битумные битумно-полимерные и полимерные материалы.
82751. Особенности индустриальной модернизации России в начале XX века 134.5 KB
  И перед новой властью неизбежно встал вопрос: а что же дальше? А дальше, вне зависимости от политических пристрастий большевистского режима на первый план выдвигалась проблема модернизации страны, ещё более обострившаяся по сравнению с началом XX века.
82752. Великое княжество Литовское 122.5 KB
  Борьба Литвы Польши и Западной Руси против рыцарей Тевтонского ордена. Отношения Руси и Литвы были настолько тесными что существовала реальная возможность развития и существования Русского государства по литовскому пути. Наибольшее сопротивление орден встретил со стороны Литвы к этому времени...
82753. Романский стиль в Западноевропейской архитектуре. Основные типы искусства готики 39.45 KB
  В подготовке общеевропейского средневекового искусства, началом которого было раннехристианское, продолжением – романское и высшим взлетом – готическое искусство, главную роль сыграли греко-кельтские истоки, романские, византийские, греческие, персидские и славянские элементы.
82754. Типология частей речи 37.18 KB
  В данной работе мы стремимся выявить типологические особенности частей речи в английском языке в сравнении с русским нас интересует структурная типология систем английского и русского языков в области морфологии лексики и синтаксиса.