41279

Сетевые модели (N-схемы). Основные соотношения. Возможные приложения N-схем

Лекция

Математика и математический анализ

Сетевые модели Nсхемы. Сетевые модели Nсхемы Основные соотношения Для формального описания структуры и взаимодействия параллельных систем и процессов а также анализа причинноследственных связей в сложных системах используются сети Петри англ. Граф Nсхемы имеет два типа узлов: позиции и переходы изображаемые 0 и 1 соответственно. Граф Nсхемы является мультиграфом так как он допускает существование кратных дуг от одной вершины к другой.

Русский

2013-10-23

176.5 KB

9 чел.

Лекция 9. Сетевые модели (N-схемы). Основные соотношения. Возможные приложения N-схем

2.6. Сетевые модели (N-схемы)

Основные соотношения

Для формального описания структуры и взаимодействия параллельных систем и процессов, а также анализа причинно-следственных связей в сложных системах используются сети Петри (англ. Petri Nets), называемые N-схемами.

Формально N-схема задается четверкой вида

N = <B, D, I, O>,

где В – конечное множество символов, называемых позициями, B  O;
D
– конечное множество символов, называемых переходами  O,
  O; I – входная функция (прямая функция инцидентности)
I: B  D  0, 1; О – выходная функция (обратная функция инцидентности),
О: B  D  0, 1. Таким образом входная функция I отображает переход dj в множество входных позиций bj  I(dj), а выходная функция O отображает переход dj в множество выходных позиций bj  О(dj). Для каждого перехода
dj  D можно определить множество входных позиций перехода I(dj) и выходных позиций перехода O(dj) как

I(dj) = { bi  B  I(bi, dj) = 1 },

O(dj) = { bi  B  O(dj, bi) = 1 },

i = ;  j = ; n = | B |, m = | D |.

Аналогично для каждой позиции bi  B вводятся определения множеств входных переходов позиции I(bi) и выходных переходов
позиции
O(bi):

I(bi) = { dj  D  I(dj, bi,) = 1 },

O(bi) = { dj  D  O(bi, dj) = 1 }.

Графически N-схема изображается в виде двудольного ориентированного мультиграфа, представляющего собой совокупность позиций и переходов (рис. 2.7). Граф N-схемы имеет два типа узлов: позиции и переходы, изображаемые 0 и 1 соответственно. Ориентировочные дуги соединяют позиции и переходы, причем каждая дуга направлена от элемента одного множества (позиции или перехода) к элементу другого множества (переходу или позиции). Граф N-схемы является мультиграфом, так как он допускает существование кратных дуг от одной вершины к другой.

Рис. 2.7. Графическое изображение N-схемы

Пример 2.2. Представим формально N-схему, показанную в виде графа на рис. 2.7:

N = <B, D, I, O>,

B = <b1, b2, b3, b4, b5>,

D = <d1, d2, d3, d4>.

Входные позиции перехода        Выходные позиции перехода

I(d1)={b1},    O(d1)={b2, b3, b5},

I(d2)={b2, b3, b5},   O(d2)={b5},

I(d3)={b3},    O(d3)={b4},

I(d4)={b4}.    O(d4)={b2, b3}.

Возможные приложения N-схем

Приведенное представление N-схемы может использоваться только как отражение статики моделируемой системы (взаимосвязи событий и условий), но не позволяет отразить в модели динамику функционирования моделируемой системы. Для представления динамических свойств объекта вводится функция маркировки (разметки) позиций М: В  {0, 1, 2, …}. Маркировка М есть присвоение неких абстрактных объектов, называемых метками (фишками), позициям N-схемы, причем количество меток, соответствующее каждой позиции, может меняться. При графическом задании N-схемы разметка отображается помещением внутри вершин позиций соответствующего числа точек (когда количество точек велико, ставят цифры).

Маркированная   (размеченная)  N-схема   может   быть  описана в виде NМ = <B, D, I, O, M>.

Функционирование N-схемы отражается путем перехода от разметки к разметке. Начальная разметка обозначается как М0: В  {0, 1, 2, …}.
Смена разметок происходит в результате срабатывания одного из переходов
dj  D сети. Необходимым условием срабатывания перехода dj
является
bi  I(dj), {M(bi)  1}, где M{bi} – позиции bi. Переход dj,
для которого выполняется указанное условие, определяется как
находящийся в состоянии готовности к срабатыванию или как возбужденный переход.

Срабатывание перехода dj изменяет разметку сети
M(b) = (M(b1), M(b2), …, M(bn))2 на разметку M(b) по следующему правилу:

M(b) = M(b) – I(dj) + O(dj),

т.е. переход dj изымает по одной метке из каждой своей входной позиции и добавляет по одной метке в каждую из выходных позиций.

Пример 2.3. Рассмотрим размеченную N-схему с начальной разметкой
M0 = {1, 0, 0, 0, 1, 0, 1}, которая приведена на рис. 2.8, а. При такой начальной разметке N-схемы единственным готовым к срабатыванию является переход d2, срабатывание которого ведет к смене разметки на M1, где M1 = {0, 1, 1, 0, 1, 0, 1} (рис. 2.8, б). При разметке M1 возможно срабатывание переходов d1 d3 и d5. В зависимости от того, какой переход сработал первым, получается одна из трех возможных новых маркировок (рис. 2.8, в, г, д). Функционирование N-схемы продолжается до тех пор, пока существует хотя бы один возможный переход.

Таким образом, N-схема выполняется путем запусков переходов под управлением количества меток и их распределения в сети. Переход запускается удалением меток из его входных позиций и образованием новых меток, помещаемых в выходные позиции. Переход может запускаться только тогда, когда он разрешен. Переход называется разрешенным, если каждая из его входных позиций имеет число меток, по крайне мере равное числу дуг из позиции в переход.

а

Рис.2.8, а. Пример функционирования размеченной N-схемы

б

Рис.2.8, б. Пример функционирования размеченной N-схемы

в

Рис.2.8, в. Пример функционирования размеченной N-схемы

г

Рис.2.8, г. Пример функционирования размеченной N-схемы

д

Рис.2.8, д. Пример функционирования размеченной N-схемы

Важной особенностью моделей процесса функционирования систем с использованием типовых N-схем является простота построения иерархических конструкций при моделировании параллельных и конкурирующих процессов в системах.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Советов Б.Я. Моделирование систем : учеб. для вузов / Б.Я. Советов, С.А. Яковлев. М. : Высш. шк., 2001. 343 с.

2. Советов Б.Я. Моделирование систем : учеб. для вузов / Б.Я. Советов, С.А. Яковлев. 2-е изд. М.: Высшая школа, 1998. 319 с.

3. Тарасик В.П. Математическое моделирование технических систем: учеб. для вузов / В.П. Тарасик. М.: Наука, 1997. 600 с.

4. Введение в математическое моделирование: учеб. пособие для вузов/ под ред. П.В.Тарасова. М.: Интермет Инжиниринг, 2000. 200 с.

5. Ивченко Г.И. Математическая статистика: учебное пособие для втузов / Г.И. Ивченко, Ю.И. Медведев. М.: Высш. шк., 1984. 248 с.

6. Альянах И.Н. Моделирование вычислительных систем / И.Н. Альянах. Л.: Машиностроение, 1988. 233 с.

7. Шеннон Р. Имитационное моделирование систем – искусство и наука / Р. Шеннон. М.: Мир, 1978. 308 с.

4

b1

b5

d2

d1

b2

b3

d4

d3

b4

b1

b2

b4

b5

b3

b7

b6

d4

d2

d1

d5

d6

d3

d4

d3

d6

d5

d1

d2

b6

b7

b3

b5

b4

b2

b1

d4

d3

d6

d5

d1

d2

b6

b7

b3

b5

b4

b2

b1

d4

d3

d6

d5

d1

d2

b6

b7

b3

b5

b4

b2

b1

d4

d3

d6

d5

d1

d2

b6

b7

b3

b5

b4

b2

b1


 

А также другие работы, которые могут Вас заинтересовать

36698. ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ ТЕПЛОЕМКОСТЕЙ ГАЗА МЕТОДОМ КЛЕМАНА - ДЕЗОРМА 73 KB
  Основные теоретические положения к данной работе основополагающие утверждения: формулы схематические рисунки: Для определения отношения Сp Cv в случае воздуха в данной лабораторной работе применен метод предложенный Клеманом и Дезормом в котором использовано охлаждение газа при его адиабатическом расширении. Быстрое сжатие и быстрое расширение газа приблизительно можно рассматривать как адиабатический процесс. Отсюда видно что при адиабатическом сжатии температура газа повышается за счет работы внешних сил а при адиабатическом...
36699. Определение параметров импульсных сигналов, используемых для электростимуляции 495 KB
  Связь амплитуды формы импульса частоты следования импульсов длительности импульсного сигнала с раздражающим действием импульсного тока. Какова будет сила тока в начале разрядки конденсатора Через 6 мс напряжение на конденсаторе упадет до 250 В. Цель работы: Используя осциллограф С819 источник питания постоянного тока Б545 дифференцирующие и интегрирующие цепи.
36700. Изучение действия СВЧ поля на вещество 551 KB
  Переменные токи наведенные электрическим полем создают в диполе стоячую волну с пучностью тока в его середине. Они препятствуют ответвлению в гальванометр высокочастотного тока свободно пропуская выпрямленный.Исследование нагревания токами СВЧ электролита и диэлектрика.Делают вывод о влиянии СВЧ поля на вещество Воздействие переменными токами Первичное действие переменного тока и электромагнитного поля на биологические объекты в основном заключается в периодическом смещении ионов растворов электролитов и изменении поляризации...
36701. Градуирование электростатического вольтметра с помощью электрометра Томсона 396 KB
  Градуирование электростатического вольтметра с помощью электрометра Томсона. Цель работы: Градуирование шкалы электростатического вольтметра с помощью абсолютного электрометра Томсона т. Основные теоретические положения к данной работе основополагающие утверждения: формулы...
36702. Определение омического сопротивления при помощи моста Уитстона 306.5 KB
  Определение омического сопротивления при помощи моста Уитстона. Цель работы: Экспериментальное определение сопротивления проводников и проверка закона Ома с помощью моста постоянного тока. Однако существует одно определенное...
36703. Определение собственной люминесценции белка 1.1 MB
  Характеристики люминесценции спектр длительность квантовый выход. Задачи Исследование спектров люминесценции Спектром люминесценции называется кривая зависимости интенсивности люминесценции от длины волны или частоты: I = f  Интенсивность люминесценции выражается обычно в величинах пропорциональных энергии или числу квантов. Качественный и количественный анализ веществ в растворе и в живой клетке может производиться по спектрам люминесценции аналогично тому как это было описано выше для спектров поглощения.
36704. ИЗУЧЕНИЕ ЗАКОНОВ ДВИЖЕНИЯ ЭЛЕКТРОНА В ЭЛЕКТРИЧЕСКОМ И МАГНИТНОМ ПОЛЯХ 290 KB
  ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №22 ИЗУЧЕНИЕ ЗАКОНОВ ДВИЖЕНИЯ ЭЛЕКТРОНА В ЭЛЕКТРИЧЕСКОМ И МАГНИТНОМ ПОЛЯХ Цель работы: Определение опытным и расчетным путем индукции магнитного поля на оси соленоида с помощью законов движения электрона в электрическом и магнитном полях. С соленоид служащий для создания магнитного поля; А амперметр для...
36705. Изучение затухающих электромагнитных колебаний в колебательном контуре с помощью осциллографа 550 KB
  Изучение с помощью электронного осциллографа электромагнитных колебаний, возникающих в колебательном контуре, содержащем индуктивность, емкость и активное сопротивление; изучение условий возникновения затухающих колебаний в контуре; расчет основных физических величин, характеризующих эти колебания.
36706. Психологічне консультування щодо вибору професії у старшокласників 392.5 KB
  Важливим аспектом у розвитку і самореалізації особистості є правильний вибір професії – це моральне задоволення, висока самооцінка. Водночас це й висока продуктивність праці, висока якість продукції. Вибір професії – точка, в якій сходяться інтереси особистості та суспільства