41279

Сетевые модели (N-схемы). Основные соотношения. Возможные приложения N-схем

Лекция

Математика и математический анализ

Сетевые модели Nсхемы. Сетевые модели Nсхемы Основные соотношения Для формального описания структуры и взаимодействия параллельных систем и процессов а также анализа причинноследственных связей в сложных системах используются сети Петри англ. Граф Nсхемы имеет два типа узлов: позиции и переходы изображаемые 0 и 1 соответственно. Граф Nсхемы является мультиграфом так как он допускает существование кратных дуг от одной вершины к другой.

Русский

2013-10-23

176.5 KB

7 чел.

Лекция 9. Сетевые модели (N-схемы). Основные соотношения. Возможные приложения N-схем

2.6. Сетевые модели (N-схемы)

Основные соотношения

Для формального описания структуры и взаимодействия параллельных систем и процессов, а также анализа причинно-следственных связей в сложных системах используются сети Петри (англ. Petri Nets), называемые N-схемами.

Формально N-схема задается четверкой вида

N = <B, D, I, O>,

где В – конечное множество символов, называемых позициями, B  O;
D
– конечное множество символов, называемых переходами  O,
  O; I – входная функция (прямая функция инцидентности)
I: B  D  0, 1; О – выходная функция (обратная функция инцидентности),
О: B  D  0, 1. Таким образом входная функция I отображает переход dj в множество входных позиций bj  I(dj), а выходная функция O отображает переход dj в множество выходных позиций bj  О(dj). Для каждого перехода
dj  D можно определить множество входных позиций перехода I(dj) и выходных позиций перехода O(dj) как

I(dj) = { bi  B  I(bi, dj) = 1 },

O(dj) = { bi  B  O(dj, bi) = 1 },

i = ;  j = ; n = | B |, m = | D |.

Аналогично для каждой позиции bi  B вводятся определения множеств входных переходов позиции I(bi) и выходных переходов
позиции
O(bi):

I(bi) = { dj  D  I(dj, bi,) = 1 },

O(bi) = { dj  D  O(bi, dj) = 1 }.

Графически N-схема изображается в виде двудольного ориентированного мультиграфа, представляющего собой совокупность позиций и переходов (рис. 2.7). Граф N-схемы имеет два типа узлов: позиции и переходы, изображаемые 0 и 1 соответственно. Ориентировочные дуги соединяют позиции и переходы, причем каждая дуга направлена от элемента одного множества (позиции или перехода) к элементу другого множества (переходу или позиции). Граф N-схемы является мультиграфом, так как он допускает существование кратных дуг от одной вершины к другой.

Рис. 2.7. Графическое изображение N-схемы

Пример 2.2. Представим формально N-схему, показанную в виде графа на рис. 2.7:

N = <B, D, I, O>,

B = <b1, b2, b3, b4, b5>,

D = <d1, d2, d3, d4>.

Входные позиции перехода        Выходные позиции перехода

I(d1)={b1},    O(d1)={b2, b3, b5},

I(d2)={b2, b3, b5},   O(d2)={b5},

I(d3)={b3},    O(d3)={b4},

I(d4)={b4}.    O(d4)={b2, b3}.

Возможные приложения N-схем

Приведенное представление N-схемы может использоваться только как отражение статики моделируемой системы (взаимосвязи событий и условий), но не позволяет отразить в модели динамику функционирования моделируемой системы. Для представления динамических свойств объекта вводится функция маркировки (разметки) позиций М: В  {0, 1, 2, …}. Маркировка М есть присвоение неких абстрактных объектов, называемых метками (фишками), позициям N-схемы, причем количество меток, соответствующее каждой позиции, может меняться. При графическом задании N-схемы разметка отображается помещением внутри вершин позиций соответствующего числа точек (когда количество точек велико, ставят цифры).

Маркированная   (размеченная)  N-схема   может   быть  описана в виде NМ = <B, D, I, O, M>.

Функционирование N-схемы отражается путем перехода от разметки к разметке. Начальная разметка обозначается как М0: В  {0, 1, 2, …}.
Смена разметок происходит в результате срабатывания одного из переходов
dj  D сети. Необходимым условием срабатывания перехода dj
является
bi  I(dj), {M(bi)  1}, где M{bi} – позиции bi. Переход dj,
для которого выполняется указанное условие, определяется как
находящийся в состоянии готовности к срабатыванию или как возбужденный переход.

Срабатывание перехода dj изменяет разметку сети
M(b) = (M(b1), M(b2), …, M(bn))2 на разметку M(b) по следующему правилу:

M(b) = M(b) – I(dj) + O(dj),

т.е. переход dj изымает по одной метке из каждой своей входной позиции и добавляет по одной метке в каждую из выходных позиций.

Пример 2.3. Рассмотрим размеченную N-схему с начальной разметкой
M0 = {1, 0, 0, 0, 1, 0, 1}, которая приведена на рис. 2.8, а. При такой начальной разметке N-схемы единственным готовым к срабатыванию является переход d2, срабатывание которого ведет к смене разметки на M1, где M1 = {0, 1, 1, 0, 1, 0, 1} (рис. 2.8, б). При разметке M1 возможно срабатывание переходов d1 d3 и d5. В зависимости от того, какой переход сработал первым, получается одна из трех возможных новых маркировок (рис. 2.8, в, г, д). Функционирование N-схемы продолжается до тех пор, пока существует хотя бы один возможный переход.

Таким образом, N-схема выполняется путем запусков переходов под управлением количества меток и их распределения в сети. Переход запускается удалением меток из его входных позиций и образованием новых меток, помещаемых в выходные позиции. Переход может запускаться только тогда, когда он разрешен. Переход называется разрешенным, если каждая из его входных позиций имеет число меток, по крайне мере равное числу дуг из позиции в переход.

а

Рис.2.8, а. Пример функционирования размеченной N-схемы

б

Рис.2.8, б. Пример функционирования размеченной N-схемы

в

Рис.2.8, в. Пример функционирования размеченной N-схемы

г

Рис.2.8, г. Пример функционирования размеченной N-схемы

д

Рис.2.8, д. Пример функционирования размеченной N-схемы

Важной особенностью моделей процесса функционирования систем с использованием типовых N-схем является простота построения иерархических конструкций при моделировании параллельных и конкурирующих процессов в системах.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Советов Б.Я. Моделирование систем : учеб. для вузов / Б.Я. Советов, С.А. Яковлев. М. : Высш. шк., 2001. 343 с.

2. Советов Б.Я. Моделирование систем : учеб. для вузов / Б.Я. Советов, С.А. Яковлев. 2-е изд. М.: Высшая школа, 1998. 319 с.

3. Тарасик В.П. Математическое моделирование технических систем: учеб. для вузов / В.П. Тарасик. М.: Наука, 1997. 600 с.

4. Введение в математическое моделирование: учеб. пособие для вузов/ под ред. П.В.Тарасова. М.: Интермет Инжиниринг, 2000. 200 с.

5. Ивченко Г.И. Математическая статистика: учебное пособие для втузов / Г.И. Ивченко, Ю.И. Медведев. М.: Высш. шк., 1984. 248 с.

6. Альянах И.Н. Моделирование вычислительных систем / И.Н. Альянах. Л.: Машиностроение, 1988. 233 с.

7. Шеннон Р. Имитационное моделирование систем – искусство и наука / Р. Шеннон. М.: Мир, 1978. 308 с.

4

b1

b5

d2

d1

b2

b3

d4

d3

b4

b1

b2

b4

b5

b3

b7

b6

d4

d2

d1

d5

d6

d3

d4

d3

d6

d5

d1

d2

b6

b7

b3

b5

b4

b2

b1

d4

d3

d6

d5

d1

d2

b6

b7

b3

b5

b4

b2

b1

d4

d3

d6

d5

d1

d2

b6

b7

b3

b5

b4

b2

b1

d4

d3

d6

d5

d1

d2

b6

b7

b3

b5

b4

b2

b1


 

А также другие работы, которые могут Вас заинтересовать

14427. Креслення в системі прямокутних проекцій. Проеціювання на три площини 92.09 KB
  Тема уроку: Креслення в системі прямокутних проекцій. Проеціювання на три площини Мета уроку: ознайомити з правилами проеціювання на три площини проекцій та правилами побудови виглядів та інших даних для повного уявлення про предмет читати та креслити графічні зобра...
14428. Волокна тваринного походження, їх властивості, використання 32.92 KB
  Тема: Волокна тваринного походження їх властивості використання. Мета: Навчити розрізняти волокна тваринного походження від інших волокон за зовнішнім виглядом на дотик за зминальністю обривом ниток; визначати види ткацьких
14429. Моделювання спідниці. Розрахунок кількості тканини, необхідної для пошиття. Правила оформлення викрійки 120.11 KB
  Тема: Моделювання спідниці. Розрахунок кількості тканини необхідної для пошиття. Правила оформлення викрійки. Мета: Ознайомити учениць із основами моделювання з основними вимогами розкроювання правильним оформленням викрійки. Навчити моделювати основну в...
14430. Розкроювання спідниці 21.54 KB
  Тема: Розкроювання спідниці. Мета: Ознайомити учениць з послідовністю розкроювання спідниці припусками на шви і обробку зрізів. Навчити правильно організовувати робоче місце розкроювати спідницю. Виховувати любов до праці бережливе ставлення до інструменту.
14431. Техніка. Керування швейною машиною з електричним приводом 281.8 KB
  Тема уроку: Техніка. Керування швейною машиною з електричним приводом. Мета уроку: ознайомити з правилами керування швейною машиною з електричним приводом правилами безпечної праці. Основні поняття: електропривід модифікація пускорегулювальна педаль Очікуван...
14432. Несправності в роботі швейної машини. Використання лапки – запошивача та лапки для вшивання застібки - блискавка. Технологія виконання запошивного шва 321.89 KB
  Тема: Несправності в роботі швейної машини. Використання лапки – запошивача та лапки для вшивання застібки блискавка. Технологія виконання запошивного шва. Мета: Навчити усувати несправності на швейній машині використовувати пристрої малої механізації на практи
14433. Підготовка деталей крою до обробки 189.84 KB
  Тема: Підготовка деталей крою до обробки. Мета: Ознайомити учениць з основною послідовністю виготовлення поясного виробу підготовкою деталей крою до обробки із термінологією ручних робіт Виховувати любов до праці акуратність точність любов до праці...
14435. Підготовка виробу до першої примірки 98 KB
  Тема: Підготовка виробу до першої примірки. Мета: Навчити готувати виріб до першої примірки. Виховувати любов до праці акуратність точність любов до праці бережливе ставлення до інструменту. Розвивати увагу точність вміння зосередитись вміння працювати самостій...