41304

Численные методы и компьютерные технологии решения дифференциальных уравнений 1-го порядка

Лабораторная работа

Информатика, кибернетика и программирование

Изучение численных методов и компьютерных технологий решения обыкновенных дифференциальных уравнений 1-го порядка, приобретение практических навыков составления алгоритмов, программ и работы на ЭВМ.

Русский

2013-10-23

456.91 KB

16 чел.

Содержание

  1.  Цель работы…………………………………………………………….3
  2.  Задание………………………………………………………………….3
  3.  Основные сведения метода Рунге-Кутта…………………………….3
  4.  Блок-схема алгоритма ...………………………………………….......4
  5.  Текст программы ….……………………………………………….….5
  6.  Результаты решения задачи в УМС MathCad……………………......6

Список литературы…………………………………………………...…..7


  1.  Цель работы

Изучение численных методов и компьютерных технологий решения обыкновенных дифференциальных уравнений 1-го порядка, приобретение практических навыков составления алгоритмов, программ и работы на ЭВМ.

  1.  Задание
  2.  Изучить численные методы и компьютерные технологии решения дифференциальных уравнений 1-го порядка.
  3.  Составить алгоритм и программу решения дифференциального уравнения с различными шагами интегрирования. Предусмотреть вывод функции, а также производной. Варианты даны в таблице.
  4.  Ввести программу в ЭВМ, отладить ее и выполнить.
  5.  Решить данное дифференциальное уравнение в среде УМС Mathcad. Результаты вывести в табличной форме и в виде графика.

вар.

Дифференциальное уравнение

y=(x0)

Отрезок

[x0; xk]

Шаг

h

Метод

2

2,6

[1,8; 2,8]

0,1

4

  1.  Основные сведения метода Рунге-Кутта

В методе Рунге-Кутта в разложении функции в окрестности точки в ряд Тейлора учитываются члены, содержащие производные до 4-го порядка включительно

.

Или , где , а

.

Производные высших порядков можно определить последовательным дифференцированием исходного уравнения (4.5): . Однако в методе Рунге-Кутта вместо непосредственных вычислений производных определяются следующие четыре коэффициента:

  (4.10)

Можно показать, что с точностью до четвертых степеней

.

Тогда

.   (4.11)

Погрешность метода .

  1.  Блок-схема алгоритма

Рис.1. Решение дифференциального уравнения методом Рунге-Кутта

  1.  Текст программы

program laba7;

uses crt;

label 1,2;

var x0,xk,y0,h,x1,x2,y2,y1:real;

begin

clrscr;

x0:=1.8;

xk:=2.8;

h:=0.01;

y0:=2.6;

writeln('x1',' ':7,'y1');

writeln(x0, ' ':5,y0:2:3);

1:x1:=x0+h;

x2:=x0+h/2;

if x1>xk then goto 2 else

begin y2:=y0+(h/2)*(x0+cos(y0/sqrt(5)));

     y1:=y0+h*(x2+cos(y2/sqrt(5)));

     writeln(x1:2:3, ' ':5,y1:2:3);

     x0:=x1; y0:=y1; goto 1;

end;

2: end.

Рис.2. Результаты решение в среде Pascal

  1.  Результаты решения задачи в УМС MathCad


Список литературы

1. Турчак Л.И. Основы численных методов: учеб. пособие для вузов/ Л.И. Турчак, П.В. Плотников. – 2-е изд., перераб. и доп. – М.: Физматлит, 2003. – 304 с.: ил. (Первое издание – 1987 г.)

2. Амосов А.А. Вычислительные методы для инженеров: учеб. пособие/ А.А. Амосов, Ю.А. Дубинский, Н.В. Копченова. – 2-е изд., доп. – М.: Изд-во МЭИ, 2003. – 596 с.: ил. (Первое издание – 1994 г.)

3. Макаров Е.Г. Инженерные расчеты в Mathcad (+СD)/ Е.Г. Макаров. – СПб.: Питер, 2007. – 592 с.: ил. +CD-ROM

4. Поршнев С.В. Численные методы на базе Mathcad/ С.В. Поршнев, И.В. Беленкова. – СПб.: БХВ-Петербург, 2005. – 464 с.: ил.

5. Николаев Н.Н. Вычислительная математика (Линейная алгебра. Приближенное представление функций): конспект лекций/ Н.Н. Николаев. Чуваш. ун-т. – Чебоксары, 1996. – 64 с.: ил.

6. Николаев Н.Н. Вычислительные методы. Определенные интегралы, нелинейные и дифференциальные уравнения: конспект лекций/ Н.Н. Николаев. Чуваш. ун-т. – Чебоксары, 2010. 96 с.: ил.

7. Николаев Н.Н. Основы работы в системе MATHCAD: вычислительные методы: лаб. практикум/ Н.Н. Николаев. – Чебоксары: Изд-во Чуваш. ун-та, 2011. – 116 с.


 

А также другие работы, которые могут Вас заинтересовать

22533. Свойства тензора напряжений. Главные напряжения 95 KB
  Свойства тензора напряжений. Главные напряжения Тензор напряжений обладает свойством симметрии. Для доказательства этого свойства рассмотрим приведенный в лекции 5 элементарный параллелепипед с действующими на его площадках компонентами тензора напряжений. Отличные от нуля моменты создают компоненты верхняя грань и права грань: После сокращения на элемент объема dV=dxdydz получим Аналогично приравнивая нулю сумму моментов всех сил относительно осей Оу и Ог получим еще два соотношения Эти условия симметрии и тензора напряжений...
22534. Плоское напряженное состояние 98.5 KB
  Тензор напряжений в этом случае имеет вид Геометрическая иллюстрация представлена на рис. Инварианты тензора напряжений равны а характеристическое уравнение принимает вид Корни этого уравнения равны 1 Нумерация корней произведена для случая Рис. Позиция главных напряжений Произвольная площадка характеризуется углом на рис. Если продифференцировать соотношение 2 по и приравнять производную нулю то придем к уравнению 4 что доказывает экстремальность главных напряжений.
22535. Упругость и пластичность. Закон Гука 156 KB
  При высоких уровнях нагружения когда в теле возникают значительные деформации материал частично теряет упругие свойства: при разгрузке его первоначальные размеры и форма полностью не восстанавливаются а при полном снятии внешних нагрузок фиксируются остаточные деформации. Накапливаемые в процессе пластического деформирования остаточные деформации называются пластическими. Твердые тела выполненные из различных материалов разрушаются при разной величине деформации. Соответствующие деформации обозначим через и причем эти деформации...
22536. Механические характеристики конструкционных материалов 110 KB
  ДИАГРАММЫ УПРУГОПЛАСТИЧЕСКОГО ДЕФОРМИРОВАНИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ Основным опытом для определения механических характеристик конструкционных материалов является опыт на растяжение призматического образца центрально приложенной силой направленной по продольной оси; при этом в средней части образца реализуется однородное напряженное состояние. Форма размеры образца и методика проведения испытаний определяются соответствующими стандартами например ГОСТ 34643 81 ГОСТ 149773. Физический смысл коэффициента Е определяется как...
22537. Влияние различных факторов на механические характеристики материалов 54.5 KB
  Влияние процентного содержания углерода Влияние температуры окружающей среды. Повышенные температуры оказывают существенное влияние на такие механические характеристики конструкционных материалов как ползучесть и длительная прочность. Скорость релаксации напряжений возрастает при повышении температуры. Прочность углеродистых сталей с повышением температуры до 650 700oС снижается почти в десять раз.
22538. Основные понятия теории надежности конструкций 79.5 KB
  Условие прочности по существу есть условие обеспечения прочностной надежности. Например предельное напряжение входящее в условие прочности по своей природе является случайным. Если стечение обстоятельств приводящее к нарушению условия прочности редкое событие то приходим к вероятностной трактовке условия прочности с позиций теории надежности. Вместо условия прочности 1 записывается условие Р=Р 2 где Р заданное достаточно высокое значение вероятности которое называется нормативной вероятностью безотказной работы.
22539. Прочность и перемещения при центральном растяжении или сжатии 136 KB
  Напомним что под растяжением сжатием понимают такой вид деформации стержня при котором в его поперечном сечении возникает лишь один внутренний силовой фактор продольная сила Nz. Поскольку продольная сила численно равна сумме проекций приложенных к одной из отсеченных частей внешних сил на ось стержня для прямолинейного стержня она совпадает в каждом сечении с осью Oz то растяжение сжатие имеет место если все внешние силы действующие по одну сторону от данного поперечного сечения сводятся к равнодействующей направленной вдоль...
22540. Расчет статически неопределимых систем по допускаемым нагрузкам 116.5 KB
  Расчет статически неопределимых систем по допускаемым нагрузкам. Применение к статически определимым системам. Расчетная схема статически определимой стержневой системы Рассчитывая эту систему обычным путем найдем усилия N1 = N2 no формуле: из равновесия узла А. Это всегда имеет место для статически определимых конструкций при равномерном распределении напряжений когда материал по всему сечению используется полностью.
22541. Учет собственного веса при растяжении и сжатии 102 KB
  Длина стержня l площадь поперечного сечения F удельный вес материала и модуль упругости Е. Подсчитаем напряжения по сечению АВ расположенному на расстоянии от свободного конца стержня. Эти напряжения будут нормальными равномерно распределенными по сечению и направленными наружу от рассматриваемой части стержня т. Наиболее напряженным опасным будет верхнее сечение для которого достигает наибольшего значения l; напряжение в нем равно: Условие прочности должно быть выполнено именно для этого сечения: Отсюда необходимая площадь стержня...