41305

Численные методы и компьютерные технологии решения систем дифференциальных уравнений и дифференциальных уравнений n-го порядка

Лабораторная работа

Информатика, кибернетика и программирование

Изучение численных методов и компьютерных технологий решения систем дифференциальных уравнений 1-го порядка и дифференциальных уравнений n-го порядка, приобретение практических навыков составления алгоритмов, программ и работы на ЭВМ.

Русский

2013-10-23

778.94 KB

31 чел.

Содержание

  1.  Цель работы……………………………………………………...…….3
  2.  Задание……………………………………………………………...….3
  3.  Основные сведения исправленного метода Эйлера….………...….3
  4.  Блок-схема алгоритма ...………………………………………..…....5
  5.  Текст программы ….……………………………………………...…..6
  6.  Результаты решения задачи в УМС MathCad…………………….........8

Список литературы…………………………………………………........9


  1.  Цель работы

Изучение численных методов и компьютерных технологий решения систем дифференциальных уравнений 1-го порядка и дифференциальных уравнений n-го порядка, приобретение практических навыков составления алгоритмов, программ и работы на ЭВМ.

  1.  Задание
  2.  Изучить численные методы и компьютерные технологии решения систем дифференциальных уравнений и дифференциальных уравнений n-го порядка.
  3.  Составить алгоритм и программу решения дифференциального уравнения 2-го порядка. Варианты даны в таблице. В программе предусмотреть вывод на печать значений аргумента, результатов численного решения, включая первую производную, точных значений функции и погрешности счета.
  4.  Ввести программу в ЭВМ, отладить ее и выполнить. Результаты приложить к отчету.
  5.  Решить данное дифференциальное уравнение в среде УМС Mathcad. Результаты представить в табличной форме и в виде графика.

вар.

Дифференциальное

уравнение

Нач. условия

Отрезок

[x0; xk]

Шаг

h

Метод

Точное решение

y0

y0

2

1

1

[0; 0,5]

0,05

2

  1.  Основные сведения исправленного метода Эйлера

В исправленном методе Эйлера для повышения точности в разложении искомой функции в ряд Тейлора учитываются три первых члена ряда Тейлора

.  (4.7)

При этом вторая производная находится по формуле правой односторонней конечной разности

.

Тогда из (4.7)

Или, с учетом вышеприведенных обозначений,

.

Аналогично для узла формулу исправленного метода Эйлера можно записать в виде

.  (4.8)

Рис. 4.2. Исправленный метод Эйлера

Структура этой формулы такая же, что и для метода Эйлера. Но вместо производной в начале элементарного участка здесь используется среднее значение производных в начале и в конце этого участка. То есть в исправленном методе Эйлера производная функции на интервале также принимается постоянной, но равной среднему значению производных в начале и в конце интервала. Это повышает точность решения уравнения.

Исправленный метод Эйлера иллюстрируется графиками на рис. 4.2. Здесь через и условно обозначены значения производных в начале и в конце элементарного участка , а через – их среднее значение. Как видно, локальная погрешность этого метода действительно меньше, чем для метода Эйлера.

Полученная схема решения является неявной, поскольку искомое значение входит в обе части уравнения (4.8). Поэтому используются две итерации. Сначала вычисляется промежуточное значение искомой функции в точке методом Эйлера по формуле (4.6)

,

а затем подставляется в уравнение (4.8):

.

Локальная погрешность исправленного метода Эйлера . Объем вычислений в этом методе больше, поскольку на каждом шаге значение функции вычисляется 2 раза. Алгоритм представлен на рис. П8,а.

  1.  Блок-схема алгоритма

Рис.1. Решение системы двух дифференциальных уравнений 1-го порядка методом Эйлера

  1.  Текст программы

program laba8;

uses crt;

label 1,2;

var x0,xk,y0,z0,h,x1,y2,y1,z1,z2,z,yt,n:real;

begin

clrscr;

y0:=1; x0:=0; xk:=0.5; h:=0.05; z0:=1; yt:=1;

writeln('Введите n');

read(n);

h:=(xk-x0)/n;

writeln('x=',x0,' ':7,' y=',y0,' ':7,' z=',z0,' ':7,'уточненное=',yt);

2:

x1:=x0+h;

if x1>xk then goto 1 else;

y2:=y0+h*z0;

z2:=z0+h*(-(1+z0*z0)/(1+x0*x0));

y1:=y0+(h/2)*(z0+z2);

z1:=z0+(h/2)*((-(1+z0*z0)/(1+x0*x0))

      +(-(1+z2*z2)/(1+x1*x1)));

yt:=1-x1+2*ln(1+x1);

writeln('x1=',x1:3:3, ' ':3, 'y1=',y1:3:4, ' '

 :3, 'z=',z1:3:4, ' ':3, 'yt=',yt:3:4, ' ':3);

x0:=x1;

y0:=y1;

z0:=z1;

goto 2;

1:

end. 

Рис.2. Результаты решения в среде Pascal

  1.  Результаты решения задачи в УМС MathCad

Список литературы

1. Турчак Л.И. Основы численных методов: учеб. пособие для вузов/ Л.И. Турчак, П.В. Плотников. – 2-е изд., перераб. и доп. – М.: Физматлит, 2003. – 304 с.: ил. (Первое издание – 1987 г.)

2. Амосов А.А. Вычислительные методы для инженеров: учеб. пособие/ А.А. Амосов, Ю.А. Дубинский, Н.В. Копченова. – 2-е изд., доп. – М.: Изд-во МЭИ, 2003. – 596 с.: ил. (Первое издание – 1994 г.)

3. Макаров Е.Г. Инженерные расчеты в Mathcad (+СD)/ Е.Г. Макаров. – СПб.: Питер, 2007. – 592 с.: ил. +CD-ROM

4. Поршнев С.В. Численные методы на базе Mathcad/ С.В. Поршнев, И.В. Беленкова. – СПб.: БХВ-Петербург, 2005. – 464 с.: ил.

5. Николаев Н.Н. Вычислительная математика (Линейная алгебра. Приближенное представление функций): конспект лекций/ Н.Н. Николаев. Чуваш. ун-т. – Чебоксары, 1996. – 64 с.: ил.

6. Николаев Н.Н. Вычислительные методы. Определенные интегралы, нелинейные и дифференциальные уравнения: конспект лекций/ Н.Н. Николаев. Чуваш. ун-т. – Чебоксары, 2010. 96 с.: ил.

7. Николаев Н.Н. Основы работы в системе MATHCAD: вычислительные методы: лаб. практикум/ Н.Н. Николаев. – Чебоксары: Изд-во Чуваш. ун-та, 2011. – 116 с.


 

А также другие работы, которые могут Вас заинтересовать

41318. Изучение команд обращения к портам. Реализа-ция последовательного и параллельного обмена данными 149.5 KB
  Основные теоретические положения Организация ввода вывода в микропроцессорной системе Вводом выводом ВВ называется передача данных между ядром ЭВМ включающим в себя микропроцессор и основную память и внешними устройствами ВУ. Управляющие данные от процессора называемые также командными словами или приказами инициируют действия не связанные непосредственно с передачей данных например запуск устройства запрещение прерываний и т. Управляющие данные от внешних устройств называются словами состояния; они содержат информацию об...
41319. Изучение команд пересылки данных МК МС 68HC908GP32 1.63 MB
  Практически изучить команды пересылки данных МК МС 68HC908GP32 ПК ПО. Методические материалы и литература: Методические указания по выполнению практических работ; Иллюстративный материал: команды управления на языке SM для МП. При запуске МК процедура RЕSЕТ в РС автоматически загружается адрес первой команды выполняемой программы вектор начального запуска из двух...
41320. Изучение команд передачи управления 4.09 MB
  Практически изучить команды передачи управления . Методические материалы и литература: Методические указания по выполнению практических работ; Иллюстративный материал: команды операций над числами . При этом использовать описание работы лабораторный блок ПК иллюстрационный материал; В практической части отработать следующие подразделы: Рассмотреть команды передачи управления; Выполнить примеры и отразить их в отчёте; Проанализировать результаты выполненных примеров. Основные теоретические положения Способы...
41321. Изучение программной модели команд управления на языке SM для МП 1.1 MB
  Практически изучить программную модель команд управления на языке SM для МП. Методические материалы и литература: Методические указания по выполнению практических работ; Иллюстративный материал: команды управления на языке SM для МП. При этом исполнение текущей последовательности команд приостанавливается прерывается а вместо нее начинает выполняться другая последовательность соответствующая данному прерыванию.
41322. Изучение команд операций над числами 1.62 MB
  Основные теоретические положения Структура команд Любая команда ЭВМ обычно состоит из двух частей: операционной и адресной. Трехадресная команда легко расшифровывалась и была удобна в использовании но с ростом объемов ОЗУ ее длина становилась непомерно большой. Пример программы в командах процессора Перед вами короткая программа для процессора семейства 1п1е1 которая увеличивает число находящееся в регистре ах. Пример программы в командах процессора Несмотря на то что приведенная программа по длине явно больше чем...
41323. Изучение команд операций с битами 5.5 MB
  Каждая команда МК подгруппы РIС16F8Х представляет собой 14битовое слово разделенное на код операции ОРСОDЕ и поле для одного и более операндов которые могут участвовать или не участвовать в этой команде.1 Основные форматы команд МК Команды работы с битами Отличительной особенностью данной группы команд является то что они оперируют с однобитными операндами в качестве которых используются отдельные биты регистров МК. отрицание логическое НЕ логическая операция над одним операндом результатом которой является...
41324. Исследование состава и возможностей ИС РПО для семейства МК АVR 3.63 MB
  Основные теоретические положения Программная среда АVR Studio Фирма Аtmel разработчик микроконтроллеров АVR очень хорошо позаботилась о сопровождении своей продукции. Для написания программ их отладки трансляции и прошивки в память микроконтроллера фирма разработала специализированную среду разработчика под названием АVR Studio Программная среда АVR Studio это мощный современный про граммный продукт позволяющий производить все этапы разработки программ для любых микрокон троллеров серии АVR ....
41325. Работа с ИС РПО для семейства МК АVR 5.99 MB
  Если уже есть файл с текстом программы на Ассемблере и просто необходимо создать проект а затем подключить туда готовый программный файл снимите соответствующую галочку. Оно должно содержать имя файла куда будет записываться текст программы. При выборе этого элемента диалог создания проекта будет автоматически запускаться каждый раз при запуске программы VR Studio.ps; файл куда будет помещен текст программы на Ассемблере Prog1.
41326. Лабораторная работа Определение скорости полета пули методом баллистического маятника 461 KB
  Приборы: пули свинцовые 5 штук; пневматическое ружье; баллистический маятник; аналитические весы 0001 г; технические весы 1 г; линейка 1 см; секундомер 01 с. где d – расстояние от зеркальца до шкалы; n –отклонение “зайчика†по шкале; – расстояние от оси вращения до точки удара пули; l – расстояние от оси вращения до центра тяжести; h – высота поднятия цента тяжести;  угол отклонения; масса пули m.