41305

Численные методы и компьютерные технологии решения систем дифференциальных уравнений и дифференциальных уравнений n-го порядка

Лабораторная работа

Информатика, кибернетика и программирование

Изучение численных методов и компьютерных технологий решения систем дифференциальных уравнений 1-го порядка и дифференциальных уравнений n-го порядка, приобретение практических навыков составления алгоритмов, программ и работы на ЭВМ.

Русский

2013-10-23

778.94 KB

31 чел.

Содержание

  1.  Цель работы……………………………………………………...…….3
  2.  Задание……………………………………………………………...….3
  3.  Основные сведения исправленного метода Эйлера….………...….3
  4.  Блок-схема алгоритма ...………………………………………..…....5
  5.  Текст программы ….……………………………………………...…..6
  6.  Результаты решения задачи в УМС MathCad…………………….........8

Список литературы…………………………………………………........9


  1.  Цель работы

Изучение численных методов и компьютерных технологий решения систем дифференциальных уравнений 1-го порядка и дифференциальных уравнений n-го порядка, приобретение практических навыков составления алгоритмов, программ и работы на ЭВМ.

  1.  Задание
  2.  Изучить численные методы и компьютерные технологии решения систем дифференциальных уравнений и дифференциальных уравнений n-го порядка.
  3.  Составить алгоритм и программу решения дифференциального уравнения 2-го порядка. Варианты даны в таблице. В программе предусмотреть вывод на печать значений аргумента, результатов численного решения, включая первую производную, точных значений функции и погрешности счета.
  4.  Ввести программу в ЭВМ, отладить ее и выполнить. Результаты приложить к отчету.
  5.  Решить данное дифференциальное уравнение в среде УМС Mathcad. Результаты представить в табличной форме и в виде графика.

вар.

Дифференциальное

уравнение

Нач. условия

Отрезок

[x0; xk]

Шаг

h

Метод

Точное решение

y0

y0

2

1

1

[0; 0,5]

0,05

2

  1.  Основные сведения исправленного метода Эйлера

В исправленном методе Эйлера для повышения точности в разложении искомой функции в ряд Тейлора учитываются три первых члена ряда Тейлора

.  (4.7)

При этом вторая производная находится по формуле правой односторонней конечной разности

.

Тогда из (4.7)

Или, с учетом вышеприведенных обозначений,

.

Аналогично для узла формулу исправленного метода Эйлера можно записать в виде

.  (4.8)

Рис. 4.2. Исправленный метод Эйлера

Структура этой формулы такая же, что и для метода Эйлера. Но вместо производной в начале элементарного участка здесь используется среднее значение производных в начале и в конце этого участка. То есть в исправленном методе Эйлера производная функции на интервале также принимается постоянной, но равной среднему значению производных в начале и в конце интервала. Это повышает точность решения уравнения.

Исправленный метод Эйлера иллюстрируется графиками на рис. 4.2. Здесь через и условно обозначены значения производных в начале и в конце элементарного участка , а через – их среднее значение. Как видно, локальная погрешность этого метода действительно меньше, чем для метода Эйлера.

Полученная схема решения является неявной, поскольку искомое значение входит в обе части уравнения (4.8). Поэтому используются две итерации. Сначала вычисляется промежуточное значение искомой функции в точке методом Эйлера по формуле (4.6)

,

а затем подставляется в уравнение (4.8):

.

Локальная погрешность исправленного метода Эйлера . Объем вычислений в этом методе больше, поскольку на каждом шаге значение функции вычисляется 2 раза. Алгоритм представлен на рис. П8,а.

  1.  Блок-схема алгоритма

Рис.1. Решение системы двух дифференциальных уравнений 1-го порядка методом Эйлера

  1.  Текст программы

program laba8;

uses crt;

label 1,2;

var x0,xk,y0,z0,h,x1,y2,y1,z1,z2,z,yt,n:real;

begin

clrscr;

y0:=1; x0:=0; xk:=0.5; h:=0.05; z0:=1; yt:=1;

writeln('Введите n');

read(n);

h:=(xk-x0)/n;

writeln('x=',x0,' ':7,' y=',y0,' ':7,' z=',z0,' ':7,'уточненное=',yt);

2:

x1:=x0+h;

if x1>xk then goto 1 else;

y2:=y0+h*z0;

z2:=z0+h*(-(1+z0*z0)/(1+x0*x0));

y1:=y0+(h/2)*(z0+z2);

z1:=z0+(h/2)*((-(1+z0*z0)/(1+x0*x0))

      +(-(1+z2*z2)/(1+x1*x1)));

yt:=1-x1+2*ln(1+x1);

writeln('x1=',x1:3:3, ' ':3, 'y1=',y1:3:4, ' '

 :3, 'z=',z1:3:4, ' ':3, 'yt=',yt:3:4, ' ':3);

x0:=x1;

y0:=y1;

z0:=z1;

goto 2;

1:

end. 

Рис.2. Результаты решения в среде Pascal

  1.  Результаты решения задачи в УМС MathCad

Список литературы

1. Турчак Л.И. Основы численных методов: учеб. пособие для вузов/ Л.И. Турчак, П.В. Плотников. – 2-е изд., перераб. и доп. – М.: Физматлит, 2003. – 304 с.: ил. (Первое издание – 1987 г.)

2. Амосов А.А. Вычислительные методы для инженеров: учеб. пособие/ А.А. Амосов, Ю.А. Дубинский, Н.В. Копченова. – 2-е изд., доп. – М.: Изд-во МЭИ, 2003. – 596 с.: ил. (Первое издание – 1994 г.)

3. Макаров Е.Г. Инженерные расчеты в Mathcad (+СD)/ Е.Г. Макаров. – СПб.: Питер, 2007. – 592 с.: ил. +CD-ROM

4. Поршнев С.В. Численные методы на базе Mathcad/ С.В. Поршнев, И.В. Беленкова. – СПб.: БХВ-Петербург, 2005. – 464 с.: ил.

5. Николаев Н.Н. Вычислительная математика (Линейная алгебра. Приближенное представление функций): конспект лекций/ Н.Н. Николаев. Чуваш. ун-т. – Чебоксары, 1996. – 64 с.: ил.

6. Николаев Н.Н. Вычислительные методы. Определенные интегралы, нелинейные и дифференциальные уравнения: конспект лекций/ Н.Н. Николаев. Чуваш. ун-т. – Чебоксары, 2010. 96 с.: ил.

7. Николаев Н.Н. Основы работы в системе MATHCAD: вычислительные методы: лаб. практикум/ Н.Н. Николаев. – Чебоксары: Изд-во Чуваш. ун-та, 2011. – 116 с.


 

А также другие работы, которые могут Вас заинтересовать

22473. ИНТЕРФЕЙСЫ, ТЕРМИНАЛЬНОЕ ОБОРУДОВАНИЕ, СТРУКТУРА TDMA КАДРОВ И ФОРМИРОВАНИЕ СИГНАЛОВ В СТАНДАРТЕ GSM 381.44 KB
  Цель работы Изучить интерфейсы структуру служб терминальное оборудование структуру TDMA кадров и формирование сигналов в стандарте GSM. Ознакомиться с внутренними интерфейсами используемыми для соединения между различным оборудованием сетей GSM. Ознакомиться со структурой служб и передачей данных в стандарте GSM.
22474. ОБОРУДОВАНИЕ ПОДВИЖНЫХ И БАЗОВЫХ СТАНЦИЙ, ЦЕНТРА КОММУТАЦИИ 124.5 KB
  Цель работы Изучить блоксхемы подвижной станции абонентского радиотелефонного аппарата базовой станции и центра коммутации. Задание Изучить блоксхему подвижной станции ПС. Изучить блоксхему базовой станции БС. Краткая теория вопроса Рассмотрение элементов системы сотовой связи начнем с подвижной станции наиболее простого по функциональному назначению устройства и к тому же единственного элемента системы который не только реально доступен пользователю но и находится у него в руках в буквальном смысле этого слово.
22475. ПРИНЦИПЫ ПОСТРОЕНИЯ И ТИПЫ ТРАНКИНГОВЫХ СИСТЕМ 1.62 MB
  Изучить основные типы транкинговых систем: Система ВОЛЕМОТ; Система АЛТАЙ; Системы стандарта SMARTRUNK; Системы стандарта МРТ 1327; Система IDEN; Система стандарта TETRA. Однако продолжают успешно развиваться сравнительно простые системы радиосвязи имеющие специальное ограниченное применение. Профессиональные системы подвижной радиосвязи создавались и развертывались в России в интересах обеспечения служебной деятельности различных государственных структур министерства обороны правоохранительных органов промышленных групп и...
22476. КЛАССИФИКАЦИЯ СИСТЕМ ПЕРСОНАЛЬНОГО РАДИОВЫЗОВА, ПЕЙДЖЕРЫ, РЕПИТЕРЫ, ОСНОВНЫЕ ПРОТОКОЛЫ ПЕРЕДАЧИ ИНФОРМАЦИИ. 1.21 MB
  КЛАССИФИКАЦИЯ СИСТЕМ ПЕРСОНАЛЬНОГО РАДИОВЫЗОВА ПЕЙДЖЕРЫ РЕПИТЕРЫ ОСНОВНЫЕ ПРОТОКОЛЫ ПЕРЕДАЧИ ИНФОРМАЦИИ. Цель работы Изучить классификацию систем персонального радиовызова пейджеры репитеры основные протоколы передачи информации. Ознакомиться с основными протоколами передачи информации в СПРВ. При этом для передачи вызова абоненту использовалось последовательное тональное кодирование адреса обеспечивающее возможность обслуживания до нескольких десятков тысяч пользователей.
22477. ИЗУЧЕНИЕ МЕТОДОВ КОДИРОВАНИЯ РЕЧЕВЫХ СИГНАЛОВ В СТАНДАРТЕ ТЕТRА ТРАНКИНГОВЫХ СЕТЕЙ 961.5 KB
  Задание Ознакомиться с общим описанием алгоритма кодирования речевого сигнала. Изучить особенности канального кодирования для различных логических каналов. Oбщее описание алгоритма кодирования речевого сигнала СЕLР Для кодирования информационного уплотнения речевых сигналов в стандарте ТЕТRА используется кодер с линейным предсказанием и многоимпульсным возбуждением от кода СЕLР Соdе Ехсited Linear Ргеdiction.
22478. СИСТЕМА СОТОВОЙ СВЯЗИ СТАНДАРТА GSM-900 109.5 KB
  Цель работы Изучить основные технические характеристики функциональное построение и интерфейсы принятые в цифровой сотовой системе подвижной радиосвязи стандарта GSM. Задание Ознакомиться с общими характеристиками стандарта GSM. Краткая теория Стандарт GSM Global System for Mobile communications тесно связан со всеми современными стандартами цифровых сетей в первую очередь с ISDN и IN Intelligent Network.