41305

Численные методы и компьютерные технологии решения систем дифференциальных уравнений и дифференциальных уравнений n-го порядка

Лабораторная работа

Информатика, кибернетика и программирование

Изучение численных методов и компьютерных технологий решения систем дифференциальных уравнений 1-го порядка и дифференциальных уравнений n-го порядка, приобретение практических навыков составления алгоритмов, программ и работы на ЭВМ.

Русский

2013-10-23

778.94 KB

31 чел.

Содержание

  1.  Цель работы……………………………………………………...…….3
  2.  Задание……………………………………………………………...….3
  3.  Основные сведения исправленного метода Эйлера….………...….3
  4.  Блок-схема алгоритма ...………………………………………..…....5
  5.  Текст программы ….……………………………………………...…..6
  6.  Результаты решения задачи в УМС MathCad…………………….........8

Список литературы…………………………………………………........9


  1.  Цель работы

Изучение численных методов и компьютерных технологий решения систем дифференциальных уравнений 1-го порядка и дифференциальных уравнений n-го порядка, приобретение практических навыков составления алгоритмов, программ и работы на ЭВМ.

  1.  Задание
  2.  Изучить численные методы и компьютерные технологии решения систем дифференциальных уравнений и дифференциальных уравнений n-го порядка.
  3.  Составить алгоритм и программу решения дифференциального уравнения 2-го порядка. Варианты даны в таблице. В программе предусмотреть вывод на печать значений аргумента, результатов численного решения, включая первую производную, точных значений функции и погрешности счета.
  4.  Ввести программу в ЭВМ, отладить ее и выполнить. Результаты приложить к отчету.
  5.  Решить данное дифференциальное уравнение в среде УМС Mathcad. Результаты представить в табличной форме и в виде графика.

вар.

Дифференциальное

уравнение

Нач. условия

Отрезок

[x0; xk]

Шаг

h

Метод

Точное решение

y0

y0

2

1

1

[0; 0,5]

0,05

2

  1.  Основные сведения исправленного метода Эйлера

В исправленном методе Эйлера для повышения точности в разложении искомой функции в ряд Тейлора учитываются три первых члена ряда Тейлора

.  (4.7)

При этом вторая производная находится по формуле правой односторонней конечной разности

.

Тогда из (4.7)

Или, с учетом вышеприведенных обозначений,

.

Аналогично для узла формулу исправленного метода Эйлера можно записать в виде

.  (4.8)

Рис. 4.2. Исправленный метод Эйлера

Структура этой формулы такая же, что и для метода Эйлера. Но вместо производной в начале элементарного участка здесь используется среднее значение производных в начале и в конце этого участка. То есть в исправленном методе Эйлера производная функции на интервале также принимается постоянной, но равной среднему значению производных в начале и в конце интервала. Это повышает точность решения уравнения.

Исправленный метод Эйлера иллюстрируется графиками на рис. 4.2. Здесь через и условно обозначены значения производных в начале и в конце элементарного участка , а через – их среднее значение. Как видно, локальная погрешность этого метода действительно меньше, чем для метода Эйлера.

Полученная схема решения является неявной, поскольку искомое значение входит в обе части уравнения (4.8). Поэтому используются две итерации. Сначала вычисляется промежуточное значение искомой функции в точке методом Эйлера по формуле (4.6)

,

а затем подставляется в уравнение (4.8):

.

Локальная погрешность исправленного метода Эйлера . Объем вычислений в этом методе больше, поскольку на каждом шаге значение функции вычисляется 2 раза. Алгоритм представлен на рис. П8,а.

  1.  Блок-схема алгоритма

Рис.1. Решение системы двух дифференциальных уравнений 1-го порядка методом Эйлера

  1.  Текст программы

program laba8;

uses crt;

label 1,2;

var x0,xk,y0,z0,h,x1,y2,y1,z1,z2,z,yt,n:real;

begin

clrscr;

y0:=1; x0:=0; xk:=0.5; h:=0.05; z0:=1; yt:=1;

writeln('Введите n');

read(n);

h:=(xk-x0)/n;

writeln('x=',x0,' ':7,' y=',y0,' ':7,' z=',z0,' ':7,'уточненное=',yt);

2:

x1:=x0+h;

if x1>xk then goto 1 else;

y2:=y0+h*z0;

z2:=z0+h*(-(1+z0*z0)/(1+x0*x0));

y1:=y0+(h/2)*(z0+z2);

z1:=z0+(h/2)*((-(1+z0*z0)/(1+x0*x0))

      +(-(1+z2*z2)/(1+x1*x1)));

yt:=1-x1+2*ln(1+x1);

writeln('x1=',x1:3:3, ' ':3, 'y1=',y1:3:4, ' '

 :3, 'z=',z1:3:4, ' ':3, 'yt=',yt:3:4, ' ':3);

x0:=x1;

y0:=y1;

z0:=z1;

goto 2;

1:

end. 

Рис.2. Результаты решения в среде Pascal

  1.  Результаты решения задачи в УМС MathCad

Список литературы

1. Турчак Л.И. Основы численных методов: учеб. пособие для вузов/ Л.И. Турчак, П.В. Плотников. – 2-е изд., перераб. и доп. – М.: Физматлит, 2003. – 304 с.: ил. (Первое издание – 1987 г.)

2. Амосов А.А. Вычислительные методы для инженеров: учеб. пособие/ А.А. Амосов, Ю.А. Дубинский, Н.В. Копченова. – 2-е изд., доп. – М.: Изд-во МЭИ, 2003. – 596 с.: ил. (Первое издание – 1994 г.)

3. Макаров Е.Г. Инженерные расчеты в Mathcad (+СD)/ Е.Г. Макаров. – СПб.: Питер, 2007. – 592 с.: ил. +CD-ROM

4. Поршнев С.В. Численные методы на базе Mathcad/ С.В. Поршнев, И.В. Беленкова. – СПб.: БХВ-Петербург, 2005. – 464 с.: ил.

5. Николаев Н.Н. Вычислительная математика (Линейная алгебра. Приближенное представление функций): конспект лекций/ Н.Н. Николаев. Чуваш. ун-т. – Чебоксары, 1996. – 64 с.: ил.

6. Николаев Н.Н. Вычислительные методы. Определенные интегралы, нелинейные и дифференциальные уравнения: конспект лекций/ Н.Н. Николаев. Чуваш. ун-т. – Чебоксары, 2010. 96 с.: ил.

7. Николаев Н.Н. Основы работы в системе MATHCAD: вычислительные методы: лаб. практикум/ Н.Н. Николаев. – Чебоксары: Изд-во Чуваш. ун-та, 2011. – 116 с.


 

А также другие работы, которые могут Вас заинтересовать

31619. ЕКСТРЕМАЛЬНІ СТАНИ 132.5 KB
  Велика кількість крові скопичується в розширених венозних і артеріальних судинах черевної порожнини легень підшкірної клітковини що значно зменшує ОЦК і АТ і отже приплив крові до серця. Обумовлене цим зниження серцевого викиду крові приводить до ще більшого зменшення ОЦК і АТ що ускладнює стан пацієнта. У результаті зазначених змін розвивається комплекс закономірних стереотипних взаємозалежних змін в організмі до яких відносять тріаду характерних порушень: 1 Розлади і недостатність функцій органів і фізіологічних систем:...
31620. ЗАПАЛЕННЯ. Фагоцитоз 78 KB
  Потім в ділянку запалення виходять мононуклеарні фагоцити моноцити які фагоцитують не тільки мікроорганізми а і зруйновані клітини. Головне завдання лейкоцитів в зоні запалення – фагоцитоз мікроорганізмів і продуктів розпаду пошкоджених клітин. □ Рецептороопосередковані механізми обумовлюються існуванням на поверхні фагоцитів спеціальних рецепторів для молекул які входять до складу мікробної стінки наприклад для вуглеводню зімозану або для молекул які з‘являються на поверхні власних нежиттєздатних клітин зони запалення.
31621. Запалення. Етіологія запалення 99.5 KB
  Крім того запалення є важливою захиснопристосувальною реакцією яка сформувалася в процесі еволюції як засіб збереження цілого організму за рахунок втрати його якоїсь певної частини. Запалення ушкоджує цілу структурнофункціональну одиницю тканини або органа яка носить назву гістіон і включає в себе: 1 специфічні для даної тканини чи органа клітини паренхіматозні клітини; 2 елементи сполучної тканини: а клітини фіброцити фібробласти моноцити гранулоцити тканині базофіли б сполучнотканинні волокна колагенові еластичні...
31622. ЗАХВОРЮВАННЯ НИРОК 85.5 KB
  Гломерулонефрит двохстороннє дифузне захворювання нирок алергійної природи. Гострий гломерулонефрит ГГН найбільш розповсюджене захворювання нирок особливо у молодому віці 2040 років має тривалий сезонний перебіг загострюється з жовтня по березень і є причиною розвитку ХНН. гіпертензивний синдром виникає у зв’язку із гіпоксією юкстагломерулярного апарату нирок що веде до активації ренінангіотензинальдостеронвазопресинної системи і супроводжується виникненням реноваскулярної гіпертензії.
31623. ІНФЕКЦІЙНИЙ ПРОЦЕС 81.5 KB
  Розвиток і перебіг інфекційного процесу викликаного різними патогенними мікроорганізмами характеризуються в цілому однотипністю але разом з тим існують визначені відмінні риси цього процесу обумовлені насамперед характером інфекційного фактора а також реактивністю макроорганізму і впливом на нього умов навколишнього середовища. Усі збудники інфекційних хвороб відбулися від вільно живучих мікроорганізмів сапрофітів що набули в ході еволюції здатність до паразитизму існуванню за рахунок живильних речовин організму хазяїна. Надходження...
31624. ПАТОГЕННА ДІЯ ФАКТОРІВ ЗОВНІШНЬОГО СЕРЕДОВИЩА 77.5 KB
  Крашсиндром це патологічний процес який розвивається в потерпілих у результаті тривалого 48 г і більше роздавлювання м’яких тканин кінцівок уламками зруйнованих будинків споруджень брилами ґрунту при обвалах у шахтах і ін. Головною ознакою стадії декомпенсації є зниження температури ядра тіла що закономірно приводить: а до зменшення швидкості всіх біохімічних реакцій в організмі у тому числі і процесів біологічного окислювання; б при цьому різко зменшується споживання кисню й утворення АТФ у клітинах; в дефіцит...
31625. ПАТОЛОГІЧНА ФІЗІОЛОГІЯ НИРОК 85 KB
  Ниркову недостатність класифікують наступним чином: 1 У залежності від причин розвитку недостатність нирок може бути: а преренальною порушення кровопостачання нирок б ренальною порушення функції клубочків клубочкової фільтрації і ниркових канальців канальцевої реабсорбції і секреції в постренальною порушення що виникають на шляху відтоку сечі і г аренальною порушення обумовлені відсутністю нирок. Причиною цього є перешкоди відтоку фільтрату чи сечі при ушкодженні канальців закупорка канальців некротчними...
31626. ПАТОЛОГІЯ ВІНЦЕВОГО КРОВООБІГУ 77 KB
  Перш ніж розглянути коронарну недостатність слід зупинитися на особливостях вінцевого кровообігу який характеризується: 1 Високим рівнем екстракції кисню в капілярах серця 7075 у головному мозку 25 у скелетних м’язах і печінці 20 що пояснюється значною довжиною капілярного русла серця і у зв’язку з цим тривалим часом контакту крові із стінкою капілярів. Тому при збільшенні потреби серця в О2 вона не може бути забезпечена шляхом збільшення екстракції О2 як у скелетних м’язах оскільки остання і так є максимально можливою в...
31627. ПАТОЛОГІЯ ВОДНО-ЕЛЕКТРОЛІТНОГО ОБМІНУ 86.5 KB
  Внутрішній обмін води залежить від збалансованості між поступленням рідини в організм і її виділенням за один і той же час. N K C Mg ВКС 100 1600 10 130 МКС 1480 45 20 10 ВСС 1420 40 25 15 Із таблиці бачимо що основним електролітом плазми і міжклітинної рідини є N а внутрішньоклітинної рідини – K і Mg2 що забезпечує осмотичний тиск всередині клітин. Дегідратація – зменшення об’єму позаклітинної рідини в організмі коли втрата води переважає над поступленням і виникає негативний водний баланс. Ізоосмолярна дегідратація –...