41307

Метод конечных разностей для решения дифференциальных уравнений в частных производных, способы построения трехмерных графиков в среде УМС Mathcad

Лабораторная работа

Информатика, кибернетика и программирование

Графики функции.Предусмотреть счетчик числа уточнений итераций значений функции. Значения функции выводить в виде матрицы. Построить график функции fxy.

Русский

2013-10-23

591.35 KB

113 чел.

Содержание

  1.  Цель работы…………………………………………………………….3
  2.  Задание………………………………………………………………….3
  3.  Основные сведения……………………………………………………..3
  4.  Блок-схема алгоритма ……...………………………………………….6
  5.  Текст программы ….…………………………………………………...7
  6.  Графики функции   ……………………….…...…………………10
  7.  Список литературы…………………………………………………….11


  1.  Цель работы

Изучение метода конечных разностей, решение уравнения Лапласа на плоскости, приобретение практических навыков составления схем алгоритмов, программ, построения трехмерных графиков в среде УМС Mathcad и работы на ЭВМ.

  1.  Задание
  2.  Изучить метод конечных разностей для решения дифференциальных уравнений в частных производных, способы построения трехмерных графиков в среде УМС Mathcad.
  3.  Составить алгоритм и программу решения задачи Дирихле. Предусмотреть счетчик числа уточнений (итераций) значений функции. Значения функции выводить в виде матрицы. Варианты заданий в таблице.
  4.  Ввести программу в ЭВМ, отладить ее и выполнить. Результаты приложить к отчету.
  5.  Построить график функции f(x,y).

вар.

Область решения

Граничные условия

a

b

c

d

25

0,1

1,1

0,1

1,1

  1.  Основные сведения

МКР является универсальным методом решения дифференциальных уравнений. Ранее было рассмотрено применение МКР при решении краевой задачи для обыкновенных дифференциальных уравнений с граничными условиями. Как и для этих задач, решение дифференциальных уравнений с частными производными МКР проводится в два этапа.

1. Разностная или дискретная аппроксимация дифференциального уравнения на сетке и формирование системы разностных уравнений.

2. Решение системы разностных уравнений и определение значений искомой функции в узлах разностной сетки.

На этапе разностной аппроксимации сначала строится разностная сетка на плоскости или в пространстве, как правило, равномерная. Все частные и смешанные производные, входящие в дифференциальное уравнение, заменяются формулами численного дифференцирования (выражаются через конечные разности). В результате получается разностное уравнение, содержащее неизвестные значения функции в узлах разностной сетки. Это уравнение называется разностной схемой. Далее это разностное уравнение записывается для каждого узла разностной сетки, где нужно определить искомую функцию. В результате получается система разностных уравнений. В частности, для дифференциального уравнения с двумя независимыми переменными часто используется двумерная прямоугольная разностная сетка, часто с равными шагами h по координатам x и y. Для этого заданный интервал [a,b] по оси 0х делится на n равных участков с равномерным шагом . А интервал [c,d] по оси 0y – на m равных участков с таким же шагом .

Рис. 6.1. Аппроксимация частных производных

Выразим производные функции двух переменных в узле через конечные разности (рис 6.1). Принадлежность функции к данному узлу будем обозначать соответствующими индексами при знаке функции f:

,

и т.п.

При использовании формул односторонней и центральной конечных разностей (ОКР, ЦКР) частная производная первого порядка функции по x выразятся следующим образом:

• левые ОКР    – ;

• правые ОКР  – ;

• ЦКР           – .

Аналогичные формулы получаются для частной производной по у:

• левые ОКР    – ;

• правые ОКР – ;

• ЦКР         – .

Вторые производные по переменным x и y находятся по аналогичным для функции одной переменной формулам

Смешанная производная находится с использованием формулы ЦКР

Аналогичным образом можно получить формулы для частных и смешанных производных для случаев, когда шаги разностной сетки по осям x и y различные. Также можно рассматривать разностные сетки для трехмерного пространства и получить соответствующие формулы.

  1.  Блок-схема алгоритма

Рис.1 Решение уравнения Лапласа методом конечных разностей

  1.  Текст программы

program lab10;

uses crt;

label 1,2;

const a=0.1;

     c=0.1;

     b=1.1;

     dd=1.1;

var x,y,h,e,be,v,d:real;

   i,j,n,m,k,l:integer;

   f:array [0..100,0..100] of real;

begin

clrscr;

write('Введите размерность матрицы n=');

readln(n);

m:=n;

write('Введите точность e=');

readln(e);

write('Введите допустимое число итераций l=');

readln(l);

h:=(b-a)/n;

i:=0; j:=0;

x:=0.2;

y:=0.2;

for j:=0 to m do

begin

f[n,j]:=0.13*x+0.2*y;

x:=x+h;

end;

i:=0; j:=0;

x:=0.1;

y:=0.1;

for i:=n downto 0 do

begin

f[i,j]:=0.13*x+0.2*y;

y:=y+h;

end;

i:=0; j:=0;

x:=0.1;

y:=1.1;

for j:=0 to m do

begin

f[i,j]:=0.13*x+0.2*y;

x:=x+h;

end;

i:=0; j:=0;

x:=1.1;

y:=0.1;

for i:=n downto 0 do

begin

f[i,n]:=0.13*x+0.2*y;

y:=y+h;

end;

writeln('Вывод массива границ');

for i:=1 to n-1 do

for j:=1 to m-1 do

f[i,j]:=0;

for i:=0 to n do

begin

for j:=0 to m do

begin

write(f[i,j]:5:3,' ');

end;

writeln;

end;

k:=0;

1:

be:=0;

for i:=1 to n-1 do

for j:=1 to m-1 do

begin

v:=(f[i-1,j]+f[i+1,j]+f[i,j-1]+f[i,j+1])/4;

d:=abs(v-f[i,j]);

f[i,j]:=v;

if be<d then be:=d;

k:=k+1; if k>=l then begin writeln('Превышено число итераций'); goto 2; end;

end;

if be<=e then begin

writeln('Конечный массив');

for i:=0 to n do

begin

for j:=0 to m do

begin

write(f[i,j]:5:3,' ');

end;

writeln;

end; end else goto 1;

2:

writeln('Число итераций k=',k);

end.

Результат решения в среде Pascal:

Начальные условия:

Размерность матрицы n=10

Точность решения ε=0.00001

Число допустимых итераций l=10000

  1.  График функции

                                 


Список литературы

1. Турчак Л.И. Основы численных методов: учеб. пособие для вузов/ Л.И. Турчак, П.В. Плотников. – 2-е изд., перераб. и доп. – М.: Физматлит, 2003. – 304 с.: ил. (Первое издание – 1987 г.)

2. Амосов А.А. Вычислительные методы для инженеров: учеб. пособие/ А.А. Амосов, Ю.А. Дубинский, Н.В. Копченова. – 2-е изд., доп. – М.: Изд-во МЭИ, 2003. – 596 с.: ил. (Первое издание – 1994 г.)

3. Макаров Е.Г. Инженерные расчеты в Mathcad (+СD)/ Е.Г. Макаров. – СПб.: Питер, 2007. – 592 с.: ил. +CD-ROM

4. Поршнев С.В. Численные методы на базе Mathcad/ С.В. Поршнев, И.В. Беленкова. – СПб.: БХВ-Петербург, 2005. – 464 с.: ил.

5. Николаев Н.Н. Вычислительная математика (Линейная алгебра. Приближенное представление функций): конспект лекций/ Н.Н. Николаев. Чуваш. ун-т. – Чебоксары, 1996. – 64 с.: ил.

6. Николаев Н.Н. Вычислительные методы. Определенные интегралы, нелинейные и дифференциальные уравнения: конспект лекций/ Н.Н. Николаев. Чуваш. ун-т. – Чебоксары, 2010. 96 с.: ил.

7. Николаев Н.Н. Основы работы в системе MATHCAD: вычислительные методы: лаб. практикум/ Н.Н. Николаев. – Чебоксары: Изд-во Чуваш. ун-та, 2011. – 116 с.


 

А также другие работы, которые могут Вас заинтересовать

47952. Мотивация и стимулирование персонала 135.93 KB
  Стимулирование труда предполагает создание условий (хозяйственного механизма), при которых активная трудовая деятельность, дающая определенные, заранее зафиксированные результаты, становится необходимым и достаточным условием удовлетворения значимых и социально обусловленных потребностей работника
47953. Економічна статистика. Впровадження економічної статистики на підприємства різних типів господарювання 953.5 KB
  Предмет і метод статистичної науки та її завдання в умовах формування ринкової економіки. Статистичне спостереження. Зведення і групування матеріалів статистичного спостереження. Абсолютні та відносні величини. Середні величини. Ряди динаміки. Графічні зображення. Статистика засобів виробництва
47954. Страхування. Конспект лекцій 2.22 MB
  Конспект лекцій Страхування для студентів спеціальностей €œБанківська справа Фінанси та €œОблік і аудит€ Харків: ХБІ УАБС 2005. Конспект лекцій підготовлений відповідно до програми з нормативної навчальної дисципліни €œСтрахування . Складається із вступу мета і завдання дисципліни її місце у навчальному процесі; навчальнометодичного забезпечення яке розкриває сутність та зміст основних питань курсу “Страхування †з кожної теми; рекомендованої літератури.
47955. Сучасні технології в рекламі та ПР-діяльності 59 KB
  Соціальний ПР може допомогти створити і підтримати позитивний імідж компанії використовуючи спеціальні технології у тому числі благодійність довгострокові соціальні програми. Вони дозволяють підвищити рейтинг компанії і організацій сприяють формуванню позитивної оцінки її діяльності в цілому появи зацікавленості суспільства а також влада в стабільності і процвітанні. У результаті втрачали не тільки громадяни але і компанії чий авторитет поступово знижувався. Щоб відповідати цим очікуванням потрібно планомірний комплексний підхід до...
47956. Сучасні технології в рекламі та ПР-діяльності 955 KB
  Несвоєчасне подання інформації заперечення факту знищення фінансових документів клієнтів і через кілька днів його визнання наполегливі спроби заперечувати свою провину коли ФБР не тільки вже зібрало всі докази але частина з них оприлюднило завдали такого удару по репутації nderson що від нього почали йти клієнти. Ними можуть бути представники виконавчої та законодавчої влади аналітики ринку інвестори й акціонери засоби масової інформації споживачі продукції. Процеси обміну тобто купівлі та продажу товарів характеризуються...
47957. Словотвір як учення про творення слів і загальні принципи їх мотивації 337.5 KB
  Творення відведення це розділ мовознавства який вивчає слова за способами і засобами їх творення та словотвірною структурою. Словотворення зароджується одночасно зі словами базується на них і є засобом їх формування. Розділ мовознавчої науки який вивчає процес творення слів його механізм правила способи моделі словотвірну структуру слова і словотвірну систему мови називається словотвором. Зв'язок словотворення із синтаксисом виявляється в тому що: 1 синтаксична одиниця словосполучення становить для деривації...
47958. ІСТОРІЯ УКРАЇНИ 96.5 KB
  Вступ до курсу Історія України Історія України як наука та навчальна дисципліна Історія України як галузь історичної науки і як навчальна дисципліна. Періодизація історії України. Міжпредметний зв'язок у вивченні історії України.
47960. ТЕОРІЯ ДЕРЖАВИ І ПРАВА 966.5 KB
  Предмет теорії держави і права. Методологія теорії держави і права. Функції теорії держави і права.