41340

Определение модуля Юнга по растяжению проволоки

Лабораторная работа

Физика

Цели и задачи: необходимо вычислить модуль Юнга для проволоки определив удлинение этой проволоки ΔL под действием приложенной к ней силы F при известной длине проволоки L и площади поперечного сечения S. Приборы и материалы: для определения модуля Юнга используется установка которая состоит из проволоки закрепленной в кронштейне к нижнему концу которой подвешивается растягивающий груз играющий роль деформирующей силы. Для определения удлинения проволоки под действием груза служит зеркальце прикрепленное вертикально к горизонтальному...

Русский

2013-10-23

189.5 KB

11 чел.

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ХИМИЧЕСКИЙ ФАКУЛЬТЕТ

Лабораторная работа № 5

по дисциплине «Физика»

на тему: «Определение модуля Юнга по растяжению проволоки».

ВЫПОЛНИЛ:

Студент                                     Завьялов Кирилл Вадимович

                              Группа 1

                                                                                   Курс 1

                                                                                   № зачетной книжки:  063157

                                                                               Дата выполнения: 28.03.07

                                                                              Дата сдачи отчета: 4.04.07

 

Санкт – Петербург

2007

Лабораторная работа №5

1. Цели и задачи: необходимо вычислить модуль Юнга для проволоки, определив удлинение этой проволоки ΔL под действием приложенной к ней силы F при известной длине проволоки L и площади поперечного сечения S.

2. Приборы и материалы: для определения модуля Юнга используется установка, которая состоит из проволоки, закрепленной в кронштейне, к нижнему концу которой подвешивается растягивающий груз, играющий роль деформирующей силы. Проволока закреплена в оправе, что делает невозможным маятникообразные раскачивания и предохраняет проволоку от толчков при снимании и подвешивании гирь. Для определения удлинения проволоки под действием груза служит зеркальце, прикрепленное вертикально к горизонтальному рычагу, опирающемуся на верхнюю поверхность оправы. Когда под действием груза проволока удлиняется, рычаг и зеркальце поворачиваются на некоторый угол. Этот угол измеряется при помощи вертикальной шкалы и осветителя. Зеркальце отражает свет от осветителя на шкалу, по которой и определяется удлинение проволоки.

3. Используемые формулы: модуль Юнга рассчитывается по следующей формуле:

а)    где L – длина проволоки, R – расстояние от шкалы до зеркальца,   d – диаметр проволоки, r – длина рычага, F – сила, действующая на проволоку, x-x0удлинение проволоки, определяемое по шкале (здесь x – общее удлинение системы, x0  - прогиб кронштейна)

б) Погрешность окончательного результата вычисляется по формуле

4. Порядок выполнения работы:  

1. Определение параметров установки:

L = (97,6±0,05) см = (97,6±0,05)•10-2 м

R = (84,5±0,05) см = (84,5±0,05) )•10-2 м

r = (14,9±0,01) мм = (14,9±0,01) )•10-3 м

Определение диаметра проволоки:

Коэффициент Стьюдента берем из таблицы для числа опытов n=5 и доверительной вероятности  p=0,95. В этом случае он равен 2,8.

d = (0,98±0,01)•10-3 м

2. Затем нужно взять грузы 0,5; 1,0; 1,5; 2,0; 2,5 кГ и для каждого груза определить величину x-x0. Для этого сначала нужно подвесить груз на крючок, соединенный с перекладинами кронштейна и определить x0 (прогиб кронштейна), а потом повесить тот же груз на крючок проволоки и определить x. Искомое удлинение проволоки определяется как разность величин x и x0. По полученным данным необходимо рассчитать модуль Юнга и его среднюю квадратичную погрешность по алгоритму прямых измерений.

Результаты измерений и вычислений представлены в таблицах:

а) Экспериментальные данные:

Номер опыта

x0, см

x, см

Груз, кГ

1

15,7

16,7

0,5

2

15,8

17,8

1,0

3

15,9

18,9

1,5

4

15,9

19,7

2,0

5

16

20,8

2,5

б) Вычисление модуля Юнга для 5 опытов:

в) Вычисление средней квадратичной погрешности для модуля Юнга по алгоритму прямых измерений:

 

5. Определение погрешности окончательного результата:

Необходимо построить график зависимости x-x0  от силы, действующей на груз. По этому графику нужно определить величину  и по методу наименьших квадратов определить обратную ей величину  и ее доверительную границу . Затем найти , после чего вычислить погрешность окончательного результата по формуле, указанной в пункте 3.

Расчет  по методу наименьших квадратов для 5 измерений:

Коэффициент Стьюдента берем из таблицы для числа опытов n=5 и доверительной вероятности  p=0,95. В этом случае он равен 2,8.

Таким образом, = 0,0308;  =2684265820,27 (по формуле из пункта 3)

Окончательную погрешность находим как корень квадратный из суммы квадратов двух найденных погрешностей (по алгоритму прямых измерений и по формуле из пункта 3):

(общ.)= 3158890182,56

6. Ответ: модуль Юнга для проволоки Е = (7,34±0,3)·1010 Н/м2

                  

7. Вывод: по полученным в ходе эксперимента данным был рассчитан модуль Юнга для проволоки, относительная погрешность которого составляет 4,3%.


 

А также другие работы, которые могут Вас заинтересовать

76913. Прибавочный и подъязычный нервы 181.56 KB
  Обе пары XI XII по выходе из черепа идут между внутренней яремной веной и внутренней сонной артерией и ложатся под заднее брюшко двубрюшной мышцы. Из черепа ствол нерва выходит через яремное отверстие вместе с IX X парами и внутренней яремной веной занимая при этом латеральное положение. Внутренняя веточка для соединения с блуждающим нервом; наружная ветвь – для трапециевидной и грудиноключичнососцевидной мышц; Наружная ветвь проходит между внутренней яремной веной и внутренней сонной артерией а затем уходит под заднее брюшко...
76914. Вегетативная, автономная нервная система. Вегетативная часть нервной системы, ее деление и характеристика отделов 185.72 KB
  В надсегментарных вегетативных центрах которые располагаются в коре полушарий базальных ядрах мозжечке различают: центры чувствительные по восприятию внутренней рецепции; центры двигательные по координации гладкомышечных и сердечных сокращений в органах и сосудах. Подкорковые вегетативные центры Полосатое тело центры терморегуляции слюно и слезоотделения образования слизи. Ретикулярная формация ствола мозга – зрачковый рефлекс центры дыхания сердечный сосудистый глотания и рвоты и другие регуляции обмена веществ и...
76915. Парасимпатическая часть ВНС 187.66 KB
  Краниальная часть парасимпатических ядер включает мезэнцефалические добавочное и срединное ядра глазодвигательного нерва которые лежат в сером веществе дна водопровода на уровне верхних холмиков. Центральные нейроны ядер направляют свои преганглионарные отростки в составе глазодвигательного нерва к ресничному узлу где они переключаются на периферические 2ые нейроны. Дорсальное ядро блуждающего нерва направляет преганглионарные волокна в интрамуральные органные парасимпатические узлы органов иннервируемых Х парой где они прерываются....
76916. Шейный симпатикус. Шейный отдел симпатического ствола: топография, узлы, ветви, области, иннервируемые ими 183.18 KB
  Серые соединительные ветви выходят из шейных узлов в шейные спинномозговые нервы а с ними в нервы шейного и плечевого сплетений. Шейный верхний узел имеет веретенообразную форму в длину достигает 2 см в толщину 05 см лежит на длинной мышце головы впереди поперечных отростков IIго и IIIго шейных позвонков но позади внутренней сонной артерии и блуждающего нерва. Из него начинаются следующие симпатические нервы.
76917. Грудной симпатикус. Грудной отдел симпатического ствола, его топография, узлы и ветви 180.2 KB
  Серые ветви постганглионарные волокна направляются к грудным спинномозговым нервам а с ними в межреберные нервы и другие спинальные ветви а также в следующие нервы: грудные сердечные нервы от 25 узлов; легочные трахеальные аортальные пищеводные ветви к одноименным сплетениям; чревные или внутренностные нервы: большой от 59 узлов малый 1012 узлов непостоянный низший; через чревные нервы – в чревное солнечное сплетение живота. Грудные сердечные нервы вместе с шейными сердечными нервами образуют переднее и заднее...
76918. Поясничный и крестцовый симпатикус. Поясничный и крестцовый отделы симпатического ствола, их топография, узлы и ветви 178.89 KB
  Белые соединительные ветви преганглионарные волокна идут от латерального промежуточного ядра спинного мозга. Серые ветви постганглионарные волокна уходят ко всем поясничным спинномозговым нервам поясничному сплетению и его ветвям. Нервы: серые соединительные ветви к поясничным и крестцовым спинальным нервам; ветви к поясничному и крестцовокопчиковому сплетению и его нервам; поясничные внутренностные нервы для чревного аортального и органных сплетений; крестцовые внутренностные нервы для подчревного и органных сплетений таза.
76919. Симпатические сплетения живота. Симпатические сплетения брюшной полости и таза (чревное, верхнее и нижнее брыжеечные, верхнее и нижнее подчревные сплетения) 181.94 KB
  Вегетативные и соматические нервы участвуют в иннервации внутренних органов сосудов через вне и интраорганные сплетения состоящие из нервных узлов и соединяющих их смешанных пучков из симпатических парасимпатических чувствительных нервных волокон. Сплетение направляет ветви по ходу селезеночных печеночных желудочных брыжеечных артерий к брюшным органам в воротах которых возникают органные сплетения. В составе сплетения присутствуют пять крупных нервных узлов.
76920. Органы чувств и учение И.П. Павлова. Характеристика органов чувств в свете Павловского учения об анализаторах 180.62 KB
  Органы чувств являются периферической важнейшей рецепторной частью анализаторов первой сигнальной системы. В органах зрения и обоняния восприятие осуществляет и анализирует сама нейрочувствительная клетка и поэтому эти органы называют первично чувствующими. Поэтому эти органы называются вторично чувствующими.
76921. Орган слуха и равновесия: общий план строения и функциональные особенности 182.53 KB
  Орган слуха и равновесия иначе называется преддверноулитковым органом в котором выделяют наружное среднее и внутреннее ухо. Большая часть органа располагается внутри височной кости. Орган слуха или слуховой анализатор считается в сенсорной системе человека вторым по значению после зрительного так как крайне важен для общения с природой и обществом в связи с развитой членораздельной речью.