4149

Розклад числа на прості множники

Практическая работа

Математика и математический анализ

Розклад числа на прості множники Означення. Розкладом натурального числа nна прості множники (факторизацією числа) називається представлення його у вигляді взаємно прості числа, ki...

Украинкский

2012-11-13

97.5 KB

4 чел.

Розклад числа на прості множники

Означення. Розкладом натурального числа n на прості множники (факторизацією числа) називається представлення його у вигляді n = , де pi – взаємно прості числа, ki ³ 1 .

Задача перевірки числа на простоту є простішою за задачу факторизації. Тому перед розкладанням числа на прості множники слід перевірити число на простоту.

Означення. Розбиттям числа називається задача представлення натурального числа n у вигляді n = a * b, де a, b – натуральні числа, більші за 1 (не обов’язково прості).

Метод Ферма

Нехай n – складене число, яке не є степенем простого числа. Метод Ферма намагається знати такі натуральні x та y, що n = x2y2. Після чого дільниками числа n будуть a = xy та b = x + y: n = a * b = (xy)(x + y).

Якщо припустити що n = a * b, то в якості x та y (таких що n = x2y2)  можна обрати

,

Приклад. Виберемо n = 143 = 11 * 13.

Тоді x = (13 + 11) / 2  = 12, y = (13 – 11) / 2 = 1.

Перевірка: x2y2 = 122 – 11 = 143 = n.

Теорема. Якщо n = x2y2, то  < x < (n + 1) / 2.

Доведення. З рівності n = x2y2 випливає, що n < x2, тобто  < x.

Оскільки a = n / b, то . Максимальне значення x досягається при мінімальному b, тобто при b = 1. Звідси x =  < .

Отже для пошуку представлення n = x2y2 слід перебрати всі можливі значення x із проміжку [,  (n + 1) / 2], перевіряючи при цьому чи є вираз x2 - n повним квадратом.

Приклад. Розкласти на множники n = 391 методом Ферма.  = 19.

202 – 391 = 9 = 32. Маємо рівність: 391 = 202 – 32.

Звідси 391 = (20 – 3)(20 + 3) = 17 * 23.

Алгоритм Полард - ро факторизації числа

У 1974 році Джон Полард запропонував алгоритм знаходження нетривіального дільника натурального числа n. Пр цьому алгоритм використовує лише операції додавання, множення та віднімання модулярної арифметики.

Ідея алгоритма Полард – ро полягає в ітеративному обчисленні деякої наперед заданої поліноміальної функції f з цілими коефіцієнтами. Побудуємо послідовність xi наступним чином: x0 оберемо довільним із Zn, а xi+1 = f(xi) mod n, i ³ 0. Оскільки xi можуть приймати лише скінченний набір значень (цілі числа від 0 до n), то існують такі цілі n1 та n2 (n1 < n2), що = . Враховуючи поліноміальність f, для кожного натурального k маємо: =, тобто починаючи з індекса i = n1 послідовність {xi mod n} буде періодичною.

Приклад. Нехай n = 21, x0 = 1, xi+1 =  + 3 mod 21.

Тоді послідовність xi має вигляд: 1, 4, 19, 7, 10, 19, 7, 10, ... .

Таким чином x3 = x6, період послідовності дорівнює 3.

Послідовність xi можна відобразити у вигляді кола з хвостом: коло відповідає періодичній частині, а хвіст – доперіодичній. Картинка нагадує грецьку літеру r, тому метод який застосовується в алгоритмі називається r – евристикою. Послідовність із попереднього прикладу можна зобразити так:

Ідея алгоритму полягає в обчисленні для кожного i > 0 значення d = НСД(x2ixi, n). Якщо на деякому кроці d > 1, то це і є нетривіальний дільник числа n.

Побудуємо послідовність елементів xi наступним чином:

x0 = 2, xi+1 = f(xi) = ( + 1) mod n, i > 0

Алгоритм

Вхід: натуральне число n, параметр t ³ 1.

Вихід: нетривіальний дільник d числа n.

1. a = 2, b = 2;

2. for i ¬ 1 to  t do

2.1. Обчислити a ¬ (a2 + 1) mod n; b ¬ (b2 + 1) mod n; b ¬ (b2 + 1) mod n;

2.2. Обчислити d ¬ НСД(a - b, n);

2.3. if 1 < d < n return (d);  // знайдено нетривіальний дільник

3. return (False);   // дільника не знайдено

Вважаємо, що функція f(x) = (x2 + 1) mod n генерує випадкові числа. Тоді для знаходження дільника числа n необхідно виконати не більш ніж O() операцій модулярного множення.

Якщо алгоритм Поларда – ро не знаходить дільника за t ітерацій, то замість функції f(x) = (x2 + 1) mod n можна використовувати f(x) = (x2 + c) mod n, для деякого цілого c, c ¹ 0, -2.

Приклад. Нехай n = 19939.

Послідовність xi: 2, 5, 26, 677, 19672, 11473, 12391, 6582, 15217, 5483, 15217, 5483, 15217, ... .

a

b

d

2

2

1

5

26

1

26

19672

1

677

12391

1

19672

15217

1

11473

15217

1

12391

15217

157

Знайдено розклад 19939 = 157 * 127.

Нехай n = 143. Послідовність xi: 2, 5, 26, 105, 15, ... .

a

b

d

2

2

1

5

26

НСД(21, 143) = 1

26

15

НСД(11, 143) = 11


Знайдено розклад 143 = 11 * 13.

Ймовірносний квадратичний алгоритм факторизації числа

Твердження. Нехай x та y – цілі числа, x2 º y2 (mod n) та x ¹ ±y (mod n). Тоді x2y2 ділиться на n, при чому жоден із виразів x + y та xy не ділиться на n. Число d = НСД(x2y2, n) є нетривіальним дільником n.

Теорема. Якщо n – непарне складене число, яке не є степенем простого числа, то завжди існують такі x та y, що x2 º y2 (mod n), при чому x ¹ ± y (mod n).

Доведення. Нехай n = n1 * n2 – добуток взаємно простих чисел. Оберемо таке y, що НСД(y, n) = 1. Далі розв’яжемо систему рівнянь:

Розв’язком системи будуть такі x та y за модулем n = НСК(n1, n2), що x2 º y2 (mod n). Якщо при цьому припустити, що x º y (mod n), то з другого рівняння системи маємо: y º y (mod n2), або 2 * y = 0 (mod n2). Оскільки було обрано НСД(y, n2) = 1, то з останньої рівності випливає що n2 ділиться на 2, тобто є парним. Це суперечить умові теореми про непарність n.

Приклад. Виберемо n1 = 11,  n2 = 13 – взаємно прості числа. Тоді n = 11 * 13 = 143. Покладемо y = 5,  НСД(5, 143) = 1. Складемо систему порівнянь:

 або  

Розв’язком системи буде x º 60 (mod 143).

Має місце рівність 602 º 52 (mod 143) , при чому 60 ¹ ±5 (mod 143).

Тоді дільником числа n буде d = НСД(60 – 5, 143) = 11.

Формально ймовірносний квадратичний алгоритм факторизації будується на наступній ідеї:

Нехай F = {p0, p1, p2, …, pt} – множникова основа, pi – різні прості числа, при чому дозволяється обрати p0 = -1. Побудуємо множину порівнянь

 º zi ,

таку що значення zi є повіністю факторизованими у множині F :

,

та добуток деякої підмножини значень zi є повним квадратом:

z =  = y2, y Î Z, fi Î {0, 1}

Якщо множина порівнянь із вказаними властивостями побудована, то поклавши x =  і перевіривши виконання нерівності x ¹ ± y (mod n), отри маємо x2 º y2 (mod n). Число d = НСД(x2y2, n) є нетривіальним дільником n.

Приклад. Знайти дільник числа n = 143.

Обираємо випадково число x Î [2, 142], обчислюємо x2 (mod 143) та розкладаємо результат на множники:

1. z1 = 192 (mod 143) = 75 = 3 * 52.

2. z2 = 772 (mod 143) = 66 = 2 * 3 * 11.

3. z3 = 292 (mod 143) = 126 = 2 * 32 * 7.

4. z4 = 542 (mod 143) = 56 = 23 * 7.

Можна помітити, що добуток z3 та z4 є повним квадратом:

z = z3 * z4 = 24 * 32 * 72 = (22 * 3 * 7)2 = 842

Маємо рівність:

z3 * z4 = 292 * 542 º 842 (mod 143)

або враховуючи що 29 * 54 (mod 143) º 136, маємо:

1362 = 842 (mod 143), при чому 136 ¹ ±84 (mod 143)

Дільником числа n = 143 буде d = НСД(136 – 84, 143) = НСД(52, 143) = 13.

Квадратичний алгоритм факторизації

Серед усіх існуючих алгоритмів факторизації найшвидшим є квадратичний. Він ефективно застосовується для чисел, кількість цифр яких менша за 100 та які не мають малих простих дільників. Еврістичний аналіз, проведений Померансом [1] у 1981 році показав, що число N може бути розкладено на множники за час .

Нехай n – число, яке факторизується, m = . Розглянемо многочлен

q(x) = (x + m)2 - n

Квадратичний алгоритм обирає ai = x + m (x = 0, ±1, ±2, …), обчислює значення bi = (x + m)2n та перевіряє, чи факторизується bi у множниковій основі F = {p0, p1, p2, …, pt}.

Помітимо, що   = (x + m)2n º (x + m)2 (mod n) º bi (mod n).

Алгоритм

Вхід: натуральне число n, яке не є степенм простого числа.

Вихід: нетривіальний дільник d числа n.

1. Обрати множникову основу F = {p0, p1, p2, …, pt}, де  p0 = -1, pii - те просте число p, для якого n є квадратичним лишком за модулем p.

2. Обчислити m = [].

3. Знаходження t + 1 пари (ai, bi).

   Значення x перебираються у послідовності 0, ±1, ±2, … .

   Покласти i ¬ 1. Поки i £ t + 1 робити:

3.1. Обчислити b = q(x) =  (x + m)2n та перевірити, чи розкладається b у множниковій основі F. Якщо ні, обрати наступне x та повторити цей крок.

3.2. Нехай b = . Покласти ai = x + m, bi = b, vi = (vi1, vi2, …, vit), де vij = eij mod 2, 1 £ j £ t.

3.3. i ¬ i + 1.

4. Знайти підмножину T Í {1, 2, …, t + 1} таку що  = 0.

5. Обчислити x =  mod n.

6. Для кожного j, 1 £ j £ t, обчислити lj = () / 2.

7. Обчислити y =  mod n.

8. Якщо x º ±y (mod n), знайти іншу підмножину T Í {1, 2, …, t + 1} таку що  = 0 та перейти до кроку 5.

9. Обчислити дільник d = НСД(xy, n).

Приклад. Розкласти на множники n = 24961.

1. Побудуємо множникову основу: F = {-1, 2, 3, 5, 13, 23}

2. m = [] = 157.

3. Побудуємо наступну таблицю:

i

x

q(x)

факторизація q(x)

ai

vi

1

0

-312

-23 * 3 * 13

157

(1, 1, 1, 0, 1, 0)

2

1

3

3

158

(0, 0, 1, 0, 0, 0)

3

-1

-625

-54

156

(1, 0, 0, 0, 0, 0)

4

2

320

26 * 5

159

(0, 0, 0, 1, 0, 0)

5

-2

-936

-23 * 32 * 13

155

(1, 1, 0, 0, 1, 0)

6

4

960

26 * 3 * 5

161

(0, 0, 1 ,1, 0, 0)

7

-6

-2160

-24 * 33 * 5

151

(1, 0, 1, 1, 0, 0)

4. Виберемо T = {1, 2, 5}, оскільки v1 + v2 + v5 = 0.

5. Обчислимо x = (a1a2a5) (mod n) = 936 = 26 * 34 * 132.

6. l1 = 1, l2 = 3, l3 = 2, l4 = 0, l5 = 1, l6 = 0.

7. y = -23 * 32 * 13 (mod n) = 24025.

8. Оскільки 936 º –24025 (mod n), необхідно шукати іншу множину T.

9. Виберемо T = {3, 6, 7}, оскільки v3 + v6 + v7 = 0.

10. Обчислимо x = (a3a6a7) mod n = 23405 = 210 * 34 * 56.

11. l1 = 1, l2 = 5, l3 = 2, l4 = 3, l5 = 0, l6 = 0.

12. y = -25 * 32 * 53 (mod n) = 13922.

13. 23405 ¹ ±13922 (mod n).

d = НСД(xy, n) = НСД(9483, 24961) = 109 – дільник.

Відповідь: 109 – дільник 24961.

Література

1. Pomerance C. Analysis and comparison of some integer factorization algorithms. In Computational Methods in Number Theory, vol.154, H.Lenstra and R.Tijdeman, Eds. Amsterdam Mathematics Center 1982, pp. 89 – 139.


7

0

19

4

1


 

А также другие работы, которые могут Вас заинтересовать

53769. Баскетбол, конспект уроку для 8 класу 44 KB
  Ноги трохи зігнуті, лікоть руки опущений вниз, пальці рук супроводжають м’яч. Відстань між студентами 4 м. пальці рук розставлені. Ведення правою – лівою рукою. Відстань 4 м. Кидок виконується після ведення, кидок м’яча в ціль.
53770. Організовуючі вправи. Загальнопідготовчі вправи. Стрибки зі скакалкою 85 KB
  Стійка ноги 810 Руки розводити долонями нарізно руки за голову. разів догори прогинаючись у 1 поворот тулуба ліворуч попереку голову відводити руки в сторони вдих; 2 в. видих; 3 поворот тулуба праворуч руки в сторони вдих; 4 в. нарізно руки в сторони; разів Ноги поставити 1 нахил уперед руки якнайширше.
53771. Конспект уроку з фізичної культури Для учнів 2-А класу - реферат українською 29.5 KB
  Ходьба: руки за голову навприсядки стрибками на носках на п‘ятках4. Загальнорозвиваючі вправи на місціА Вп руки до плечейКолові рухи руками вперед назад 8р вперед8р назадБ Вп руки в сторониКолові рухи руками вперед назад 1012 раз Руки пряміВ Вп права рука вгорі ліва внизу; 12 переміна положень рук 1012 раз Руки пряміГ Вп руки вперед. Схрещення рук 1012 раз Руки пряміД Вп ноги нарізно руки на поясі 1 нахил вліво 2 в. 1012 раз Руки опущені ноги пряміІІ.
53772. Організуючі, стройові та ЗРВ. Спеціальні бігові та стрибкові вправи. Рухливі ігри 75 KB
  Стройові вправи: Праворуч Ліворуч Кругом Ліворуч Ліворуч Рівняйсь струнко Ходьба: звичайна навшпиньках на пятках з високим підніманням стегна руки перед собою у напівприсіді у повному присіді звичайна. руки на пояс. руки до плечей колові оберти зігнутими в ліктях руками вперед назад. руки в сторони сжаті в кулачки на 123 розвести руки в сторони на 4 зігнути руки до...
53773. Ярослав Стельмах. «Митькозавр із Юрківки, або химера лісогвого озера». Характеристика образів Сергія і Митька, їхньої поведінки у складних ситуаціях 48.5 KB
  Мета: Удосконалювати навички визначення рис характеру героїв твору вміння висловлювати свої думки про прочитане; розвивати навички переказу виразного і вибіркового читання спостережливість увагу; виховувати допитливість доброту любов до ближніх. Обладнання: схема з рисами характеру героїв портрет Ярослава Стельмаха. Завдання: учні мають удосконалити навички визначати риси характеру героїв твору і оцінювати їхні вчинки; закріпити вміння переказувати твір віднаходити цитати за поданим завданням висловлювати своє враження про...
53774. Малювання композиції Дерева у лісі 656 KB
  Провести бесіду В художникаграфіка; розвивати умінняспостерігати і виявляти особливості будови дерев різних порід; ознайомити звиразними особливостями ліній різної товщини навчити прийомам роботи зпаличкою пензлем пером або восковими крейдами на вибір учителя ітушшю; формувати уміння заповнювати зображенням усю площину аркушапаперу; виховувати любов до рідної природи дбайливе ставлення до матеріалівта інструментів акуратність під час роботи з тушшю;...
53775. Дієслова майбутнього часу 65.5 KB
  Життя прожити не поле перейти Хочеш знати не соромся питати Гарно того вчити хто хоче все знати Щоб довго жити треба працю любити Знайдіть дієслова в неозначеній формі. Чи можна визначити за цими дієсловами коли відбулася дія і хто її виконує Чому Не можна бо неозначена форма дієслова не вказує ні на час ні на особу 2. Запитання вчителя : Що називається дієсловом Частина мови що означає дію предмета і відповідає на питання що робити Що робив Що зробив Що робить Що зробить Що буде робити Яким...