41613

Приближенное вычисление интеграла методом Симпсона и методом Гаусса

Лабораторная работа

Математика и математический анализ

Требуется вычислить интеграл: Требуется использовать: метод Симпсона метод Гаусса Теория: 1 Метод Симпсона Для приближённого вычисления интеграла чаще всего подынтегральную функцию заменяют близкой ей вспомогательной функцией интеграла от которой вычисляется аналитически. В частности если при вычислении подынтегральную функцию заменить интерполяционным многочленом второй степени построенным по значениям функции в трёх...

Русский

2013-10-24

92.3 KB

92 чел.

Федеральное государственное бюджетное образовательное

учреждение высшего профессионального образования

Уфимский государственный авиационный технический университет

Лабораторная работа №2

по дисциплине «Численные методы»

На тему: «Приближенное вычисление интеграла методом Симпсона и методом Гаусса»

Выполнил:

студент группы ПМ-335

Ямилев И.М.

Проверил:

Голичев И.И.

Уфа

2012

Отчёт по лабораторной работе № 2.

 

Задача:

1.Требуется вычислить интеграл:                                                         

Требуется использовать:

  1.  метод Симпсона
  2.  метод Гаусса

Теория:

1) Метод Симпсона

Для приближённого вычисления интеграла чаще всего подынтегральную функцию заменяют «близкой» ей вспомогательной функцией, интеграла от которой вычисляется аналитически. За приближённое значение интеграла принимают интеграл от вспомогательной функции. В частности, если при вычислении   подынтегральную функцию заменить интерполяционным многочленом второй степени, построенным по значениям функции в трёх точках , то получится так называемая простая квадратурная формула Симпсона

,

где – остаточный член. Если   непрерывна на , то

, .

С увеличением длины промежутка интегрирования точность простой формулы Симпсона в общем случае быстро падает.

Для повышения точности интегрирования применяют составную формулу Симпсона. Чтобы получить составную формулу Симпсона, разобьем отрезок на чётное число отрезков длины . Пусть , , . Применим простую формулу Симпсона к каждому из отрезков длины . После суммирования интегралов по всем отрезкам получаем составную формулу Симпсона

.

Алгебраический порядок точности формулы Симпсона равен трём. Это означает, что она точна для многочленов до третьей степени включительно. Оценка погрешности формулы Симпсона по остаточному  члену часто оказывается малоэффективной из-за трудностей оценки четвёртой производной  подынтегральной функции.

На практике применяют  правило Рунге. Для этого выбирают число кратное 2 и вычисляют приближённое значение интеграла по формуле Симпсона с шагом   (обозначим это приближённое значение ). Затем вычисляют приближённое значение интеграла по формуле Симпсона с шагом (обозначим его ).

За приближённое значение интеграла , вычисленное по формуле Симпсона с поправкой по Рунге, принимают

.

Погрешность этого результата приближённо оценивают величиной .

2) Метод Гаусса

Гауссом были построены квадратурные формулы наивысшего алгебраического порядка точности. В квадратурной формуле Гаусса

узлы и коэффициенты подобраны так, чтобы формула была точна для всех многочленов степени . Можно показать, что если – число узлов квадратурной формулы, то её алгебраический порядок точности не может быть выше . Для приближённого вычисления интеграла по конечному отрезку выполняем замену переменной ; тогда квадратурная формула Гаусса принимает вид

,

где ; – узлы квадратурной формулы Гаусса; – гауссовы коэффициенты; .

Можно показать, что узлы квадратурных формул Гаусса являются корнями многочленов Лежандра степени . Например, при для узлов получаем . При этом .  Таким образом, квадратурная формула Гаусса

имеет такой же алгебраический порядок точности, что и формула Симпсона, но требует вычисления подынтегральной функции только в двух точках.

Если подынтегральная функция достаточно гладкая, то квадратурная формула Гаусса обеспечивает очень высокую точность при небольшом числе узлов, так как для погрешности формула Гаусса с узлами справедлива оценка

.

Концы отрезка интегрирования никогда не входят в число узлов формул Гаусса. Поэтому формулы Гаусса удобны для вычисления несобственных интегралов от неограниченных функций, если особые точки подынтегральной функции лежат на концах отрезка интегрирования. Так, формулы Гаусса позволяют вычислить интеграл , в то время как формула Симпсона здесь неприменима. Блок-схема вычисления интеграла по формуле Гаусса с восемью узлами: , ; ,;; ; , .

Результаты:

1) Для метода Симпсона получены результаты для чисел разбиений:

Число разбиений

Значение интеграла

Погрешность

1

100

-0.520721

0,000181323

2

200

-0.521986

9,03818е-005

3

400

-0.522617

4.51212е-005

4

800

-0.522933

2.25432е-005

5

1600

-0.52309

1.12673е-005

6

3200

-0.523164

5.63255е-006

7

6400

-0.523209

2.816е-006

2) Вычисление по квадратурной формуле Гаусса дало значение интеграла:

-0.523248
Вывод:

Из полученных результатов видно, что значения метод Гаусса является более точным и требует меньших вычислительных затрат по сравнению с методом Симпсона, однако требует заранее вычисленных Гауссовых коэффициентов для заданного числа узлов.


 

А также другие работы, которые могут Вас заинтересовать

21908. Некоторые вопросы оценки качества цифровых карт 110 KB
  Для быстрой оценки точности цифровой карты необходимо проверить значения реальных координат объектов карты. Проверить значения координат в углах рамки карты. в зависимости от вида и масштаба карты. Если югозападный угол карты имеет неточную привязку то весьма вероятно что все объекты карты будут иметь координаты со сдвигом.
21909. История развития ГИС 77.5 KB
  Одна из наиболее интересных черт раннего развития ГИС особенно в шестидесятые годы заключается в том что первые инициативные проекты и исследования сами были ГЕОГРАФИЧЕСКИ РАСПРЕДЕЛЕНЫ по многим точкам причем эти работы осуществлялись независимо часто без упоминания и даже с игнорированием себе подобных. Возникновение и бурное развитие ГИС было предопределено богатейшим опытом топографического и особенно тематического картографирования успешными попытками автоматизировать картосоставительский процесс а также революционным достижениями...
21910. Классификация ГИС технологий 96.5 KB
  Множество задач решаемых современными ГИС научных прикладных образовательных наконец бытовых не поддается исчислению складываясь из необозримого числа достойных внимания и описания объектов реальности помноженных на разнообразие мотивов и целей человеческой деятельности. При всем многообразии типов ГИС возможна их классификация по нескольким основаниям: пространственному охвату объекту и предметной области информационного моделирования проблемной ориентации функциональным возможностям уровню управления и некоторым другим...
21911. Ввод данных в ГИС. Базовые структуры данных в ГИС. Представление пространственных данных. Структура геоинформационных систем 73 KB
  Базовые структуры данных в ГИС. Представление пространственных данных. Ввод данных в ГИС.
21912. Определение положения точек на поверхности Земли. Координатные данные. Взаимосвязи между координатными моделями. Определение положения точек на поверхности Земли 71 KB
  Определение положения точек на поверхности Земли Координатные данные составляющие один из основных классов геоинформационных данных используют для указания местоположения на земной поверхности Поверхность Земли имеет сложную форму. Эта информация образует класс координатных данных ГИС являющийся обязательной характеристикой геообъектов. Будучи частью классом общей модели данных в ГИС координатные данные определяют класс координатных моделей Основные типы координатных моделей Класс координатных моделей можно разбить на типы. При этом...
21913. Антенны с круговой диаграммой направленности 224 KB
  Наиболее широкое применение в этой группе получили антенны типа Ground Plane GP рис.1 Конструкция антенны GP Штыревая конструкция антенны удобна для размещения как на крыше здания так и на автомобиле.6 Длина элементов антенны GP Диаметр трубки мм 2 6 20 40 Длина штыря l мм 2690 2670 2650 2620 Для нормальной работы антенны она снабжается тремя противовесами которые можно выполнить из трубки или антенного канатика.
21914. Направленные антенны. Полуволновой вибратор 375.5 KB
  Для обеспечения связи между двумя неподвижными станциями расстояние между которыми превышает дальнобойность антенн типа GP с успехом используют направленные антенны Волновой канал рис. Эти антенны концентрируют максимум излучения в нужном направлении обеспечивая выигрыш как при передаче так и при приеме.1 Антенны Волновой канал Описанные здесь антенны при горизонтальном расположении вибратора имеют горизонтальную поляризацию.
21915. Антенные решетки 122.5 KB
  Размещение излучателей в самой решетки может быть эквидистантное у которого шаг расстояние между излучателями величина постоянная и неэквидистантное у которого шаг меняется по определенному закону или случайным образом. По способу возбуждения питания излучателей различают решетки с последовательным и параллельным питанием. В больших антенных решетках применяют комбинации последовательнопараллельного питания излучателей особенно в случае разделения всей антенной решетки на подрешетки модули меньших размеров.
21916. Классификация антенных решеток 120.5 KB
  Для увеличения направленности действия на первых этапах развития антенной техники стали применять систему вибраторов антенные решетки АР. Антенные решетки наиболее распространенный класс современных антенн элементами которых могут быть как слабонаправленные излучатели металлические и щелевые вибраторы волноводы диэлектрические стержни спирали и т. С помощью решетки удается поднять электрическую прочность антенны и увеличить уровень излучаемой принимаемой мощности путем размещения в каналах решетки независимых усилителей...