41615

Решение уравнения f(x)=0 методами простых итераций и Ньютона

Лабораторная работа

Математика и математический анализ

Если же то вычисления заканчивают и за приближённое значение корня принимают величину . Абсциссы вершин этой ломанной представляют собой последовательные приближения корня . Из рисунков видно что если на отрезке то последовательные приближения колеблются около корня если же производная положительна то последовательные приближения сходятся к корню монотонно. Если через точку с координатами провести касательную то абсцисса точки пересечения этой касательной с осью и есть очередное приближение корня уравнения .

Русский

2013-10-24

134.65 KB

10 чел.

Федеральное государственное бюджетное образовательное

учреждение высшего профессионального образования

Уфимский государственный авиационный технический университет

Лабораторная работа №3

по дисциплине «Численные методы»

На тему: «Решение уравнения f(x)=0 методами простых итераций и Ньютона»

Выполнил:

студент группы ПМ-335

Ямилев И.М.

Проверил:

Голичев И.И.

Уфа

2012

Отчёт по лабораторной работе № 3.

 

Задача:

1.Требуется найти корни уравнения

Требуется использовать:

  1.  метод простых итераций
  2.  метод Ньютона

Теория:

1) Метод простых итераций

Метод простых итераций (метод последовательных приближений) решения уравнения  состоит в замене исходного уравнения эквивалентным ему уравнением  и построении последовательности  , сходящейся при к точному решению. Сформулируем достаточные условия сходимости метода простых итераций.

 Теорема. Пусть функция определена и дифференцируема на , причём все её значения. Тогда, если существует число , такое, что на отрезке , то последовательность   сходится к единственному на решению уравнения при любом начальном значении , т.е.

, , ,

 При этом, если на отрезке производная положительна, то

,

если отрицательна, то

.

Опишем один шаг итераций. Исходя из найденного на предыдущем шаге значения , вычисляем . Если , полагают и выполняют очередную итерацию. Если же , то вычисления заканчивают и за приближённое значение корня принимают величину . Погрешность полученного результата зависит от знака производной: если , то корень найден с погрешностью , если , то погрешность не превышает .

Метод допускает простую геометрическую интерпретацию. Построим графики функций и . Корнем уравнения

является  абсцисса точки пересечения кривой с прямой (рис. 1). Взяв в качестве начальной произвольную точку , строим ломаную линию (рис.3 а, б). Абсциссы вершин этой ломанной представляют собой последовательные приближения корня . Из рисунков видно, что если на отрезке , то последовательные приближения   колеблются около корня , если же производная положительна, то последовательные приближения сходятся к корню монотонно.

При использовании метода простых итераций основным моментом является выбор функции в уравнении , эквивалентном исходному. Для метода итераций следует подбирать функцию так, чтобы . При этом следует помнить, что скорость сходимости последовательности к корню тем выше, чем меньше число .

2) Метод Ньютона

Если известно хорошее начальное приближение решения уравнения , то эффективным методом повышения точности является метод Ньютона (метод касательных). Метод состоит в построении итерационной последовательности , сходящейся к корню уравнения . Сформулируем достаточные условия сходимости метода.

 Теорема. Пусть определена и дважды дифференцируема на , причём , а производные , сохраняют знак на отрезке . Тогда, исходя из начального приближения , удовлетворяющего неравенству , можно построить последовательность

,

сходящуюся к единственному на решению уравнения .

Метод Ньютона допускает простую геометрическую интерпретацию. Если через точку с координатами провести касательную, то абсцисса точки пересечения этой касательной с осью и есть очередное приближение корня уравнения .

Для оценки погрешности приближения корня можно воспользоваться неравенством

,

где – наибольшее значение модуля второй производной на отрезке ; – наименьшее значение модуля первой производной на отрезке . Таким образом, если , то . Последнее соотношение означает, что при хорошем начальном приближении корня после каждой итерации число верных десятичных знаков в очередном приближении удваивается, т.е. процесс сходится очень быстро. Значит, если необходимо найти корень с точностью , то итерационный процесс можно прекращать, когда

.

Опишем один шаг итераций. Если на -м шаге очередное приближение не удовлетворяет условию окончания процесса, то вычисляем величины , и следующее приближение корня . При выполнении условия

величину принимаем за приближённое значение корня , вычисленное с точностью .

Метод Ньютона эффективен, если известно хорошее начальное приближение для корня и в окрестности корня график функции имеет большую крутизну. В том случае процесс быстро сходится. Если же численное значение производной вблизи корня мало, то процесс вычисления корня может оказаться очень долгим.

Результаты:

По заданию необходимо найти корни функции

1) В точке  функция , а в точке  функция . В точке  функция , а в точке  функция . Таким образом, мы локализовали первый корень на промежутке [0.01; 0.2], а другой – на [0.8; 1.5].

Далее получаем функции  и :

Из приведенных выражений для  и  видно, что они удовлетворяют условиям теоремы. Для  на отрезке [0.01; 0.2] верна оценка:

Для  на отрезке [0.8; 1.5] верна оценка:

Для обоих методов выбираем точность .

За начальное приближение берется    

Для метода простых итераций получены результаты для 2 корней:

№ итерации

Приближенные значения корня

1

0.05352

2

0.03236

3

0.03009

4

0.02985

5

0.02983

№ итерации

Приближенные значения корня

1

0.98707

2

1.04824

3

1.06573

4

1.07055

5

1.07186

6

1.07222

7

1.07232

Посчитаем погрешности полученных результатов, приняв за  и  точные решения.

На промежутке [0.01; 0.2] , следовательно

На промежутке [0.8; 1.5]  , следовательно


2) Аналитически получаем, что на отрезках  [0.01; 0.2] и [0.8; 1.5] функция f удовлетворяет условиям сходимости Ньютона.

В точке  функция , а в точке   функция , следовательно, выполнено:

Производные  и  сохраняют знак на этом промежутке. Точка  удовлетворяет условию

и, следовательно, может быть взята в качестве начального приближения.

В точке  функция , а в точке   функция     , следовательно, выполнено:

Производные  и  сохраняют знак на этом промежутке. Точка  удовлетворяет условию

и, следовательно, может быть взята в качестве начального приближения.

Получаем значения минимумов и максимумов производных на этих отрезках:

Для метода Ньютона получены результаты:

№ итерации

Приближенные значения корня

1

0.02061

2

0.02811

3

0.02977

4

0.02982

№ итерации

Приближенные значения корня

1

1.09059

2

1.07241

3

1.07235


Вывод:

Из полученных результатов видно, что метод Ньютона нахождения нуля функции на заданном промежутке сходится быстрее метода простых итераций, однако требует дополнительные условия сходимости и аналитические расчеты и оценки.


 

А также другие работы, которые могут Вас заинтересовать

64827. КОНЦЕПТУАЛЬНІ ОСНОВИ ЗАБЕЗПЕЧЕННЯ ЄДНОСТІ ЛАБОРАТОРНИХ ВИПРОБУВАНЬ 315 KB
  Одночасна присутність на ринку інтересів виробників та споживачів висуває проблему забезпечення необхідної точності та вірогідності результатів випробувань створення умов для забезпечення їх порівнянності та взаємного визнання незалежно від часу і місця проведення випробувань.
64828. МОДЕЛІ ТА ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ АДМІНІСТРУВАННЯ ІНФОРМАЦІЙНОГО КОМПЛЕКСУ АВТОМАТИЗОВАНИХ СИСТЕМ 1.23 MB
  Сучасні концепції які визначають розвиток таких систем відображають зростання вимог до АС декларують необхідність забезпечення можливості настроювання та управління взаємодією й обміном даними та електронними документами між її підсистемами з метою надання актуальних даних за запитами користувачів.
64829. МІЦНІСТЬ, ВИТРИВАЛІСТЬ ТА ДЕФОРМАТИВНІСТЬ ЗАЛІЗОБЕТОННИХ ЗГИНАНИХ ЕЛЕМЕНТІВ, ПІДСИЛЕНИХ НАКЛЕЄНИМИ КОМПОЗИТНИМИ СТРІЧКАМИ 5.78 MB
  Розробити і впровадити ефективні методи розширення і підсилення автодорожніх мостів та в рамках науководослідних робіт згідно з тематичними планами Національного транспортного університету та Державної служби автомобільних доріг...
64830. ЕФЕКТИВНІСТЬ КРІОХІРУРГІЧНОГО ЛІКУВАННЯ ХВОРИХ НА ПОШИРЕНИЙ ТУБЕРКУЛЬОЗ ЛЕГЕНЬ, ПУХЛИНИ МЕЖИСТІННЯ ТА ГНІЙНІ ЗАХВОРЮВАННЯ ГРУДНОЇ СТІНКИ 137.5 KB
  Серед хворих зросла частка з мультирезистентними форми туберкульозу яким показані колапсохірургічні методи лікування різні види торакопластик. Ці методи є досить травматичними і тому від термінів післяопераційної реабілітації хворих залежить успіх всього лікування.
64831. ГІГІЄНІЧНІ ОСНОВИ ОЧИЩЕННЯ ТА ЗНЕЗАРАЖЕННЯ СУДНОВИХ СТІЧНИХ ВОД У СИСТЕМІ САНІТАРНО-ЕПІДЕМІОЛОГІЧНОГО НАГЛЯДУ 212 KB
  Основною тенденцією сучасної епохи є помітне загострення проблем глобального характеру серед яких екологічні є найважливішими в тому числі забруднення водоймищ в результаті скидання з суден необроблених стічних вод Ермолкин Н. Вміст у стічних водах хвороботворних мікроорганізмів вірусів паразитів...
64832. КОНЦЕПЦІЇ ФОРМОУТВОРЕННЯ КОСТЮМУ В ЗАХІДНОЄВРОПЕЙСЬКОМУ ДИЗАЙНІ ХХ СТОЛІТТЯ: ВИТОКИ, РОЗВИТОК, ТЕНДЕНЦІЇ 221.5 KB
  Відповідно для дослідження найбільш цінним та вагомим є досвід західноєвропейських країн зокрема Франції Італії Англії на прикладі дизайну одягу яких можна вивчити процес формоутворення костюма його специфіку та особливості.
64833. ТВОРЧІСТЬ МИКОЛИ ТРУБЛАЇНІ І СТАНОВЛЕННЯ ПРИГОДНИЦЬКОГО ЖАНРУ В УКРАЇНСЬКІЙ ЛІТЕРАТУРІ ПЕРШОЇ ПОЛОВИНИ ХХ СТОЛІТТЯ 175.5 KB
  Микола Петрович Трублаїні художник слова який посідає почесне місце серед найвизначніших українських дитячих письменників 30х років минулого століття. Трублаїні плідно працював у пригодницькому жанрі. Трублаїні у якій він осмислює сучасний йому літературний процес основні завдання літератури.
64834. ФОРМЫ ОРГАНИЗАЦИИ УЧЕБНОГО ПРОЦЕССА В ВЫСШЕЙ ШКОЛЕ 549.31 KB
  Учебный процесс при дистанционном обучении включает в себя все основные формы традиционной организации учебного процесса: лекции семинарские и практические занятия лабораторный практикум систему контроля исследовательскую и самостоятельную работу студентов.
64835. Педагогическое проектирование и педагогические технологии 241.5 KB
  Определить современное понимание и использование технологий профессионального обучения. Категории технология педагогическая технология технология обучения Сегодня в педагогической и психологической литературе часто встречается понятие технология.