41615

Решение уравнения f(x)=0 методами простых итераций и Ньютона

Лабораторная работа

Математика и математический анализ

Если же то вычисления заканчивают и за приближённое значение корня принимают величину . Абсциссы вершин этой ломанной представляют собой последовательные приближения корня . Из рисунков видно что если на отрезке то последовательные приближения колеблются около корня если же производная положительна то последовательные приближения сходятся к корню монотонно. Если через точку с координатами провести касательную то абсцисса точки пересечения этой касательной с осью и есть очередное приближение корня уравнения .

Русский

2013-10-24

134.65 KB

10 чел.

Федеральное государственное бюджетное образовательное

учреждение высшего профессионального образования

Уфимский государственный авиационный технический университет

Лабораторная работа №3

по дисциплине «Численные методы»

На тему: «Решение уравнения f(x)=0 методами простых итераций и Ньютона»

Выполнил:

студент группы ПМ-335

Ямилев И.М.

Проверил:

Голичев И.И.

Уфа

2012

Отчёт по лабораторной работе № 3.

 

Задача:

1.Требуется найти корни уравнения

Требуется использовать:

  1.  метод простых итераций
  2.  метод Ньютона

Теория:

1) Метод простых итераций

Метод простых итераций (метод последовательных приближений) решения уравнения  состоит в замене исходного уравнения эквивалентным ему уравнением  и построении последовательности  , сходящейся при к точному решению. Сформулируем достаточные условия сходимости метода простых итераций.

 Теорема. Пусть функция определена и дифференцируема на , причём все её значения. Тогда, если существует число , такое, что на отрезке , то последовательность   сходится к единственному на решению уравнения при любом начальном значении , т.е.

, , ,

 При этом, если на отрезке производная положительна, то

,

если отрицательна, то

.

Опишем один шаг итераций. Исходя из найденного на предыдущем шаге значения , вычисляем . Если , полагают и выполняют очередную итерацию. Если же , то вычисления заканчивают и за приближённое значение корня принимают величину . Погрешность полученного результата зависит от знака производной: если , то корень найден с погрешностью , если , то погрешность не превышает .

Метод допускает простую геометрическую интерпретацию. Построим графики функций и . Корнем уравнения

является  абсцисса точки пересечения кривой с прямой (рис. 1). Взяв в качестве начальной произвольную точку , строим ломаную линию (рис.3 а, б). Абсциссы вершин этой ломанной представляют собой последовательные приближения корня . Из рисунков видно, что если на отрезке , то последовательные приближения   колеблются около корня , если же производная положительна, то последовательные приближения сходятся к корню монотонно.

При использовании метода простых итераций основным моментом является выбор функции в уравнении , эквивалентном исходному. Для метода итераций следует подбирать функцию так, чтобы . При этом следует помнить, что скорость сходимости последовательности к корню тем выше, чем меньше число .

2) Метод Ньютона

Если известно хорошее начальное приближение решения уравнения , то эффективным методом повышения точности является метод Ньютона (метод касательных). Метод состоит в построении итерационной последовательности , сходящейся к корню уравнения . Сформулируем достаточные условия сходимости метода.

 Теорема. Пусть определена и дважды дифференцируема на , причём , а производные , сохраняют знак на отрезке . Тогда, исходя из начального приближения , удовлетворяющего неравенству , можно построить последовательность

,

сходящуюся к единственному на решению уравнения .

Метод Ньютона допускает простую геометрическую интерпретацию. Если через точку с координатами провести касательную, то абсцисса точки пересечения этой касательной с осью и есть очередное приближение корня уравнения .

Для оценки погрешности приближения корня можно воспользоваться неравенством

,

где – наибольшее значение модуля второй производной на отрезке ; – наименьшее значение модуля первой производной на отрезке . Таким образом, если , то . Последнее соотношение означает, что при хорошем начальном приближении корня после каждой итерации число верных десятичных знаков в очередном приближении удваивается, т.е. процесс сходится очень быстро. Значит, если необходимо найти корень с точностью , то итерационный процесс можно прекращать, когда

.

Опишем один шаг итераций. Если на -м шаге очередное приближение не удовлетворяет условию окончания процесса, то вычисляем величины , и следующее приближение корня . При выполнении условия

величину принимаем за приближённое значение корня , вычисленное с точностью .

Метод Ньютона эффективен, если известно хорошее начальное приближение для корня и в окрестности корня график функции имеет большую крутизну. В том случае процесс быстро сходится. Если же численное значение производной вблизи корня мало, то процесс вычисления корня может оказаться очень долгим.

Результаты:

По заданию необходимо найти корни функции

1) В точке  функция , а в точке  функция . В точке  функция , а в точке  функция . Таким образом, мы локализовали первый корень на промежутке [0.01; 0.2], а другой – на [0.8; 1.5].

Далее получаем функции  и :

Из приведенных выражений для  и  видно, что они удовлетворяют условиям теоремы. Для  на отрезке [0.01; 0.2] верна оценка:

Для  на отрезке [0.8; 1.5] верна оценка:

Для обоих методов выбираем точность .

За начальное приближение берется    

Для метода простых итераций получены результаты для 2 корней:

№ итерации

Приближенные значения корня

1

0.05352

2

0.03236

3

0.03009

4

0.02985

5

0.02983

№ итерации

Приближенные значения корня

1

0.98707

2

1.04824

3

1.06573

4

1.07055

5

1.07186

6

1.07222

7

1.07232

Посчитаем погрешности полученных результатов, приняв за  и  точные решения.

На промежутке [0.01; 0.2] , следовательно

На промежутке [0.8; 1.5]  , следовательно


2) Аналитически получаем, что на отрезках  [0.01; 0.2] и [0.8; 1.5] функция f удовлетворяет условиям сходимости Ньютона.

В точке  функция , а в точке   функция , следовательно, выполнено:

Производные  и  сохраняют знак на этом промежутке. Точка  удовлетворяет условию

и, следовательно, может быть взята в качестве начального приближения.

В точке  функция , а в точке   функция     , следовательно, выполнено:

Производные  и  сохраняют знак на этом промежутке. Точка  удовлетворяет условию

и, следовательно, может быть взята в качестве начального приближения.

Получаем значения минимумов и максимумов производных на этих отрезках:

Для метода Ньютона получены результаты:

№ итерации

Приближенные значения корня

1

0.02061

2

0.02811

3

0.02977

4

0.02982

№ итерации

Приближенные значения корня

1

1.09059

2

1.07241

3

1.07235


Вывод:

Из полученных результатов видно, что метод Ньютона нахождения нуля функции на заданном промежутке сходится быстрее метода простых итераций, однако требует дополнительные условия сходимости и аналитические расчеты и оценки.


 

А также другие работы, которые могут Вас заинтересовать

11492. Волновые явления на границе раздела двух сред при падении плоской электромагнитной волны 515 KB
  Лабораторная работа № 2 Волновые явления на границе раздела двух сред при падении плоской электромагнитной волны. ЦЕЛЬ РАБОТЫ Изучить волновые явления возникающие на границе раздела двух сред при падении плоско
11493. Физические принципы радиосвязи 899.5 KB
  Лабораторная работа №21 Физические принципы радиосвязи ЦЕЛЬ РАБОТЫ: 1.Изучить физические основы радиопередачи и радиоприема. 2.Научиться настраивать передающий и приемный стенды наблюдать осциллограммы процессов во всех блоках стендов. ПРИБОРЫ И ОБОРУДО
11494. Исследование механических характеристик электродвигателя постоянного тока с независимым возбуждением 329.5 KB
  Целью работы является исследование механических характеристик двигателя постоянного тока с независимым возбуждением в двигательном и тормозных режимах. Основные сведения Под механической характеристикой электродвигателя постоянного тока с независимым возбуждени...
11495. Информатика в 8 классе. Все уроки 2.76 MB
  Правила работы и безопасного поведения в компьютерном классе. Повторение структуры программы, типов данных, арифметических операций, организации ввода-вывода данных. Составление и Реализация алгоритмов с использованием операторов цикла. Применение текстового процессора в разработке документов из различных предметных областей...
11496. Алгоритмы растровой графики 153 KB
  Алгоритмы растровой графики Растром называется прямоугольная сетка точек формирующих изображение на экране компьютера. Каждая точка растра характеризуется двумя параметрами: своим положением на экране и своим цветом если монитор цветной или степенью яркости если м...
11497. Алгоритм вывода прямой линии 412 KB
  Алгоритм вывода прямой линии Поскольку экран растрового дисплея с электроннолучевой трубкой ЭЛТ можно рассматривать как матрицу дискретных элементов пикселов каждый из которых может быть подсвечен нельзя непосредственно провести отрезок из одной точки в другую.
11498. Текстовый редактор WORD. Поиск и замена фрагментов текста 43.5 KB
  ЛАБОРАТОРНАЯ РАБОТА № 4 Тема: Текстовый редактор WORD. Поиск и замена фрагментов текста. Режим поиска удобно использовать для того чтобы быстро найти в документе заданный фрагмент текста. Режим замены используется в тех случаях когда нужно не только найти какую...
11499. Природа медицинских данных 1.65 MB
  Природа медицинских данных. В медицинской практике часто используются выражения сбор данных или получение информации. Эти выражения могут трактоваться неверно на основе предположения что медицинская информация содержится в реальном мире в состоянии доступност
11500. Формирование структуры базы данных 114 KB
  Лабораторная работа 1. Формирование структуры базы данных. 1. Создайте новую базу данных. 2. Создайте таблицу базы данных. 3. Определите поля таблицы в соответствии с табл. 1.1. 4. Сохраните созданную таблицу. Таблица.1.1. Таблица данных Преподаватели ...