41620

Решение задачи Дирихле для уравнения Пуассона методом Чебышева

Лабораторная работа

Информатика, кибернетика и программирование

Разностную задачу 5 будем решать явным итерационным методом с чебышевским набором параметров который выражается следующей формулой: 10 где заданное число итераций . 11 Результаты: В вычислениях использовался следующий алгоритм: Задаём количество итераций полагаем тогда шаг сетки =01. Полученный ответ с точностью до...

Русский

2013-10-24

103.07 KB

43 чел.

Федеральное государственное бюджетное образовательное

учреждение высшего профессионального образования

Уфимский государственный авиационный технический университет

Лабораторная работа №5

по дисциплине «Численные методы»

На тему: «Решение задачи Дирихле для уравнения Пуассона

методом Чебышева»

Выполнил:

студент группы ПМ-335

Ямилев И.М.

Проверил:

Голичев И.И.

Уфа

2012

Отчёт по лабораторной работе № 5.

 

Задача:

Явным методом Чебышева требуется найти приближённое решение уравнения

                                                                                  (1)

в квадрате с краевыми условиями

                                                           ,                                                        (2)

где – граница квадрата .

Выбираем функцию, удовлетворяющую краевым условиям (2)

.

Вычислим

.

Возьмём по определению в качестве правой части уравнения (1)

,

тогда нам известно точное решение задачи (1), (2).

Теория:

От задачи (1), (2) перейдём к разностной. Вводим на плоскости прямоугольную сетку с шагом по направлению и по направлению . Получим , . Обозначим .

Обозначим через множество внутренних узлов сетки, то есть

,

а через – множество граничных узлов, то есть

.

Пусть далее

Рассмотрим конечномерное пространство функции , заданных на сетке . Здесь и будем обозначать . Обозначим

.

Тогда разностный оператор Лапласа записывается в виде

                                               .                                        (3)

Разностное выражение (3) называется пятиточечным разностным шаблоном, так как содержит значения функции в пяти точках сетки, а именно в точках . Указанное множество точек называется шаблоном разностного оператора Лапласа.

Заменим исходную задачу разностной задачей. При этом будем считать, что , тогда . Разностная аппроксимация задачи (1), (2), принимает вид

                                               ,                                        (4)

или более подробно

                               ,                       (5)

.

Обозначим через пространство функций , заданных на и равных нулю на границе со скалярным произведением

                                                   .                                      (6)

В пространстве определим оператор

                                                .                                       (7)

Тогда уравнение (5) можно записать в операторной форме

                                                               ,                                               (8)

где – функция, заданная на сетке и . Сеточные функции и будем рассматривать как вектора – мерного пространства с координатами .

Наименьшее  и наибольшее собственные значения оператора равны

,

                 (9)

.

Разностную задачу (5) будем решать явным итерационным методом с чебышевским набором параметров, который выражается следующей формулой:

                                                   ,                                   (10)

где , -заданное число итераций,

             .         (11)


Результаты:

В вычислениях использовался следующий алгоритм:

  1.  Задаём количество итераций , полагаем , тогда шаг сетки =0,1.
  2.  По формулам (9), (11) вычисляем , .
  3.  Вычисляем и по формулам (11).
  4.  Полагая , последовательно применяя формулу (10), находим .
  5.  Пункт 4 повторяем, полагая
  6.  Итерационный процесс продолжаем до совпадения первых четырех знаков в последних итерациях по циклам.

Полученный ответ с точностью до четвертой цифры получен после 50 итераций:

Точка

Точное значение функции

Значение после 40 итераций

Значение после 50 итераций

(0.1, 0.1)

0.0081

0.0080999

0.0081

(0.1, 0.2)

0.0144

0.0144

0.0144

(0.1, 0.3)

0.0189

0.0189

0.0189

(0.1, 0.4)

0.0216

0.0216

0.0216

(0.1, 0.5)

0.0225

0.0225

0.0225

(0.1, 0.6)

0.0216

0.0216

0.0216

(0.1, 0.7)

0.0189

0.0189

0.0189

(0.1, 0.8)

0.0144

0.0144

0.0144

(0.1, 0.9)

0.0081

0.0080999

0.0081

(0.2, 0.1)

0.0144

0.0144

0.0144

(0.2, 0.2)

0.0256

0.0256

0.0256

(0.2, 0.3)

0.0336

0.033599

0.0336

(0.2, 0.4)

0.0384

0.038399

0.0384

(0.2, 0.5)

0.04

0.039999

0.04

(0.2, 0.6)

0.0384

0.038399

0.0384

(0.2, 0.7)

0.0336

0.033599

0.0336

(0.2, 0.8)

0.0256

0.0256

0.0256

(0.2, 0.9)

0.0144

0.0144

0.0144

(0.3, 0.1)

0.0189

0.0189

0.0189

(0.3, 0.2)

0.0336

0.033599

0.0336

(0.3, 0.3)

0.0441

0.044099

0.0441

(0.3, 0.4)

0.0504

0.050399

0.0504

(0.3, 0.5)

0.0525

0.052499

0.0525

(0.3, 0.6)

0.0504

0.050399

0.0504

(0.3, 0.7)

0.0441

0.044099

0.0441

(0.3, 0.8)

0.0336

0.033599

0.0336

(0.3, 0.9)

0.0189

0.0189

0.0189

(0.4, 0.1)

0.0216

0.0216

0.0216

(0.4, 0.2)

0.0384

0.038399

0.0384

(0.4, 0.3)

0.0504

0.050399

0.0504

(0.4, 0.4)

0.0576

0.057599

0.0576

(0.4, 0.5)

0.06

0.059999

0.06

(0.4, 0.6)

0.0576

0.057599

0.0576

(0.4, 0.7)

0.0504

0.050399

0.0504

(0.4, 0.8)

0.0384

0.038399

0.0384

(0.4, 0.9)

0.0216

0.0216

0.0216

(0.5, 0.1)

0.0225

0.0225

0.0225

(0.5, 0.2)

0.04

0.039999

0.04

(0.5, 0.3)

0.0525

0.052499

0.0525

(0.5, 0.4)

0.06

0.059999

0.06

(0.5, 0.5)

0.0625

0.062499

0.0625

(0.5, 0.6)

0.06

0.059999

0.06

(0.5, 0.7)

0.0525

0.052499

0.0525

(0.5, 0.8)

0.04

0.039999

0.04

(0.5, 0.9)

0.0225

0.0225

0.0225

(0.6, 0.1)

0.0216

0.0216

0.0216

(0.6, 0.2)

0.0384

0.038399

0.0384

(0.6, 0.3)

0.0504

0.050399

0.0504

(0.6, 0.4)

0.0576

0.057599

0.0576

(0.6, 0.5)

0.06

0.059999

0.06

(0.6, 0.6)

0.0576

0.057599

0.0576

(0.6, 0.7)

0.0504

0.050399

0.0504

(0.6, 0.8)

0.0384

0.038399

0.0384

(0.6, 0.9)

0.0216

0.0216

0.0216

(0.7, 0.1)

0.0189

0.0189

0.0189

(0.7, 0.2)

0.0336

0.033599

0.0336

(0.7, 0.3)

0.0441

0.044099

0.0441

(0.7, 0.4)

0.0504

0.050399

0.0504

(0.7, 0.5)

0.0525

0.052499

0.0525

(0.7, 0.6)

0.0504

0.050399

0.0504

(0.7, 0.7)

0.0441

0.044099

0.0441

(0.7, 0.8)

0.0336

0.033599

0.0336

(0.7, 0.9)

0.0189

0.0189

0.0189

(0.8, 0.1)

0.0144

0.0144

0.0144

(0.8, 0.2)

0.0256

0.0256

0.0256

(0.8, 0.3)

0.0336

0.033599

0.0336

(0.8, 0.4)

0.0384

0.038399

0.0384

(0.8, 0.5)

0.04

0.039999

0.04

(0.8, 0.6)

0.0384

0.038399

0.0384

(0.8, 0.7)

0.0336

0.033599

0.0336

(0.8, 0.8)

0.0256

0.0256

0.0256

(0.8, 0.9)

0.0144

0.0144

0.0144

(0.9, 0.1)

0.0081

0.0080999

0.0081

(0.9, 0.2)

0.0144

0.0144

0.0144

(0.9, 0.3)

0.0189

0.0189

0.0189

(0.9, 0.4)

0.0216

0.0216

0.0216

(0.9, 0.5)

0.0225

0.0225

0.0225

(0.9, 0.6)

0.0216

0.0216

0.0216

(0.9, 0.7)

0.0189

0.0189

0.0189

(0.9, 0.8)

0.0144

0.0144

0.0144

(0.9, 0.9)

0.0081

0.0080999

0.0081


 

А также другие работы, которые могут Вас заинтересовать

13286. Изучение вольтамперных характеристик биполярного транзистора в среде Electronics Workbench 380.5 KB
  Лабораторная работа №2 Изучение вольтамперных характеристик биполярного транзистора в среде Electronics Workbench Цель исследования: Моделирование работы биполярного транзистора в среде Electronics Workbench и виртуальные измерения его входной и выходной вольтамперных характер
13287. Виртуальные измерения магнитной индукции на основе эффекта Холла в среде Electronics Workbench 333.5 KB
  Лабораторная работа №3 Виртуальные измерения магнитной индукции на основе эффекта Холла в среде Electronics Workbench Цель исследования: Моделирование работы датчика Холла в среде Electronics Workbench и виртуальные измерения с его помощью магнитной индукции. Задание на...
13288. Моделирование работы пироэлектрического датчика в среде Electronics Workbench 367 KB
  Лабораторная работа №4 Моделирование работы пироэлектрического датчика в среде Electronics Workbench Цель исследования: Моделирование работы пироэлектрического датчика в среде Electronics Workbench и виртуальные измерения внешнего теплового потока заданного периодической пос
13289. Hands-On Lab Debugging Applications in Windows Azure 818.61 KB
  HandsOn Lab Debugging Applications in Windows Azure Contents Overview3 Exercise 1: Debugging an Application in the Cloud5 Task 1 Exploring the Fabrikam Insurance Application5 Task 2 Running the Application as a Windows Azure Project7 Task 3 Adding Tracing Support to the Application14 Task 4 Creating a Log Viewer Tool25 Verification33 Summary38 Overview Using Visual Studio you can debug applications in your local ...
13290. Автоматизация создания документов с помощью Visual Basic .NET 101.5 KB
  6. ЛАБОРАТОРНАЯ РАБОТА Автоматизация создания документов с помощью Visual Basic .NET 6.1. Цель работы: приобретение практических навыков автоматизации создания документов с помощью Visual Basic с использованием инструментальных средств интегрированной среды разработки Vis...
13291. ТЕХНОЛОГІЇ ПРОГРАМУВАННЯ 1.46 MB
  МЕТОДИЧНІ ВКАЗІВКИ до лабораторних робіт з дисципліни ТЕХНОЛОГІЇ ПРОГРАМУВАННЯ Методичні вказівки до лабораторних робіт з дисципліни €œТехнології програмування€ для студентів напрямів 6.040302 Інформатика 6.040301 Прикладна математика / Упоряд. Кобилін О.А. Маш...
13292. ТЕХНОЛОГІЇ ПРОГРАМУВАННЯ. МЕТОДИЧНІ ВКАЗІВКИ ДО КУРСОВОГО ПРОЕКТУВАННЯ 666 KB
  МЕТОДИЧНІ ВКАЗІВКИ ДО КУРСОВОГО ПРОЕКТУВАННЯ З ДИСЦИПЛІНИ ТЕХНОЛОГІЇ ПРОГРАМУВАННЯ Методичні вказівки до курсового проектування з дисципліни Технології програмування для студентів напряму 6.040302 Інформатика /Упоряд.: Кобилін О.А. Руденко Д.О. Харкiв: ХНУРЕ ...
13293. Лабораторный практикум по механизации животноводства для студентов сельскохозяйственных высших учебных заведений инженерных специальностей 8.35 MB
  Лабораторный практикум по механизации животноводства для студентов сельскохозяйственных высших учебных заведений инженерных специальностей / В.К. Полянин В.Я. Спевак Р.А. Денисов Романов В книге рассмотрены устройство принцип действия техническое обслуживание р
13294. ЦСП ИКМ-480 611 KB
  ЦСП ИКМ480. Комплекс аппаратуры третичной ЦСП ИКМ480 предназначен для организации на внутризоновых и магистральной сетях связи пучков каналов по кабелю МКТ4 с парами 12/46 мм. Аппаратура обеспечивает организацию до 480 каналов ТЧ при скорости передачи группового потока 34 368...