41620

Решение задачи Дирихле для уравнения Пуассона методом Чебышева

Лабораторная работа

Информатика, кибернетика и программирование

Разностную задачу 5 будем решать явным итерационным методом с чебышевским набором параметров который выражается следующей формулой: 10 где заданное число итераций . 11 Результаты: В вычислениях использовался следующий алгоритм: Задаём количество итераций полагаем тогда шаг сетки =01. Полученный ответ с точностью до...

Русский

2013-10-24

103.07 KB

35 чел.

Федеральное государственное бюджетное образовательное

учреждение высшего профессионального образования

Уфимский государственный авиационный технический университет

Лабораторная работа №5

по дисциплине «Численные методы»

На тему: «Решение задачи Дирихле для уравнения Пуассона

методом Чебышева»

Выполнил:

студент группы ПМ-335

Ямилев И.М.

Проверил:

Голичев И.И.

Уфа

2012

Отчёт по лабораторной работе № 5.

 

Задача:

Явным методом Чебышева требуется найти приближённое решение уравнения

                                                                                  (1)

в квадрате с краевыми условиями

                                                           ,                                                        (2)

где – граница квадрата .

Выбираем функцию, удовлетворяющую краевым условиям (2)

.

Вычислим

.

Возьмём по определению в качестве правой части уравнения (1)

,

тогда нам известно точное решение задачи (1), (2).

Теория:

От задачи (1), (2) перейдём к разностной. Вводим на плоскости прямоугольную сетку с шагом по направлению и по направлению . Получим , . Обозначим .

Обозначим через множество внутренних узлов сетки, то есть

,

а через – множество граничных узлов, то есть

.

Пусть далее

Рассмотрим конечномерное пространство функции , заданных на сетке . Здесь и будем обозначать . Обозначим

.

Тогда разностный оператор Лапласа записывается в виде

                                               .                                        (3)

Разностное выражение (3) называется пятиточечным разностным шаблоном, так как содержит значения функции в пяти точках сетки, а именно в точках . Указанное множество точек называется шаблоном разностного оператора Лапласа.

Заменим исходную задачу разностной задачей. При этом будем считать, что , тогда . Разностная аппроксимация задачи (1), (2), принимает вид

                                               ,                                        (4)

или более подробно

                               ,                       (5)

.

Обозначим через пространство функций , заданных на и равных нулю на границе со скалярным произведением

                                                   .                                      (6)

В пространстве определим оператор

                                                .                                       (7)

Тогда уравнение (5) можно записать в операторной форме

                                                               ,                                               (8)

где – функция, заданная на сетке и . Сеточные функции и будем рассматривать как вектора – мерного пространства с координатами .

Наименьшее  и наибольшее собственные значения оператора равны

,

                 (9)

.

Разностную задачу (5) будем решать явным итерационным методом с чебышевским набором параметров, который выражается следующей формулой:

                                                   ,                                   (10)

где , -заданное число итераций,

             .         (11)


Результаты:

В вычислениях использовался следующий алгоритм:

  1.  Задаём количество итераций , полагаем , тогда шаг сетки =0,1.
  2.  По формулам (9), (11) вычисляем , .
  3.  Вычисляем и по формулам (11).
  4.  Полагая , последовательно применяя формулу (10), находим .
  5.  Пункт 4 повторяем, полагая
  6.  Итерационный процесс продолжаем до совпадения первых четырех знаков в последних итерациях по циклам.

Полученный ответ с точностью до четвертой цифры получен после 50 итераций:

Точка

Точное значение функции

Значение после 40 итераций

Значение после 50 итераций

(0.1, 0.1)

0.0081

0.0080999

0.0081

(0.1, 0.2)

0.0144

0.0144

0.0144

(0.1, 0.3)

0.0189

0.0189

0.0189

(0.1, 0.4)

0.0216

0.0216

0.0216

(0.1, 0.5)

0.0225

0.0225

0.0225

(0.1, 0.6)

0.0216

0.0216

0.0216

(0.1, 0.7)

0.0189

0.0189

0.0189

(0.1, 0.8)

0.0144

0.0144

0.0144

(0.1, 0.9)

0.0081

0.0080999

0.0081

(0.2, 0.1)

0.0144

0.0144

0.0144

(0.2, 0.2)

0.0256

0.0256

0.0256

(0.2, 0.3)

0.0336

0.033599

0.0336

(0.2, 0.4)

0.0384

0.038399

0.0384

(0.2, 0.5)

0.04

0.039999

0.04

(0.2, 0.6)

0.0384

0.038399

0.0384

(0.2, 0.7)

0.0336

0.033599

0.0336

(0.2, 0.8)

0.0256

0.0256

0.0256

(0.2, 0.9)

0.0144

0.0144

0.0144

(0.3, 0.1)

0.0189

0.0189

0.0189

(0.3, 0.2)

0.0336

0.033599

0.0336

(0.3, 0.3)

0.0441

0.044099

0.0441

(0.3, 0.4)

0.0504

0.050399

0.0504

(0.3, 0.5)

0.0525

0.052499

0.0525

(0.3, 0.6)

0.0504

0.050399

0.0504

(0.3, 0.7)

0.0441

0.044099

0.0441

(0.3, 0.8)

0.0336

0.033599

0.0336

(0.3, 0.9)

0.0189

0.0189

0.0189

(0.4, 0.1)

0.0216

0.0216

0.0216

(0.4, 0.2)

0.0384

0.038399

0.0384

(0.4, 0.3)

0.0504

0.050399

0.0504

(0.4, 0.4)

0.0576

0.057599

0.0576

(0.4, 0.5)

0.06

0.059999

0.06

(0.4, 0.6)

0.0576

0.057599

0.0576

(0.4, 0.7)

0.0504

0.050399

0.0504

(0.4, 0.8)

0.0384

0.038399

0.0384

(0.4, 0.9)

0.0216

0.0216

0.0216

(0.5, 0.1)

0.0225

0.0225

0.0225

(0.5, 0.2)

0.04

0.039999

0.04

(0.5, 0.3)

0.0525

0.052499

0.0525

(0.5, 0.4)

0.06

0.059999

0.06

(0.5, 0.5)

0.0625

0.062499

0.0625

(0.5, 0.6)

0.06

0.059999

0.06

(0.5, 0.7)

0.0525

0.052499

0.0525

(0.5, 0.8)

0.04

0.039999

0.04

(0.5, 0.9)

0.0225

0.0225

0.0225

(0.6, 0.1)

0.0216

0.0216

0.0216

(0.6, 0.2)

0.0384

0.038399

0.0384

(0.6, 0.3)

0.0504

0.050399

0.0504

(0.6, 0.4)

0.0576

0.057599

0.0576

(0.6, 0.5)

0.06

0.059999

0.06

(0.6, 0.6)

0.0576

0.057599

0.0576

(0.6, 0.7)

0.0504

0.050399

0.0504

(0.6, 0.8)

0.0384

0.038399

0.0384

(0.6, 0.9)

0.0216

0.0216

0.0216

(0.7, 0.1)

0.0189

0.0189

0.0189

(0.7, 0.2)

0.0336

0.033599

0.0336

(0.7, 0.3)

0.0441

0.044099

0.0441

(0.7, 0.4)

0.0504

0.050399

0.0504

(0.7, 0.5)

0.0525

0.052499

0.0525

(0.7, 0.6)

0.0504

0.050399

0.0504

(0.7, 0.7)

0.0441

0.044099

0.0441

(0.7, 0.8)

0.0336

0.033599

0.0336

(0.7, 0.9)

0.0189

0.0189

0.0189

(0.8, 0.1)

0.0144

0.0144

0.0144

(0.8, 0.2)

0.0256

0.0256

0.0256

(0.8, 0.3)

0.0336

0.033599

0.0336

(0.8, 0.4)

0.0384

0.038399

0.0384

(0.8, 0.5)

0.04

0.039999

0.04

(0.8, 0.6)

0.0384

0.038399

0.0384

(0.8, 0.7)

0.0336

0.033599

0.0336

(0.8, 0.8)

0.0256

0.0256

0.0256

(0.8, 0.9)

0.0144

0.0144

0.0144

(0.9, 0.1)

0.0081

0.0080999

0.0081

(0.9, 0.2)

0.0144

0.0144

0.0144

(0.9, 0.3)

0.0189

0.0189

0.0189

(0.9, 0.4)

0.0216

0.0216

0.0216

(0.9, 0.5)

0.0225

0.0225

0.0225

(0.9, 0.6)

0.0216

0.0216

0.0216

(0.9, 0.7)

0.0189

0.0189

0.0189

(0.9, 0.8)

0.0144

0.0144

0.0144

(0.9, 0.9)

0.0081

0.0080999

0.0081


 

А также другие работы, которые могут Вас заинтересовать

49408. Устройство формирования импульсных последовательностей на базе МПС 374 KB
  Система состоит из микропроцессора таймера тактового генератора блока памяти. ВМ – выбор микросхемы ЗП – вход для записи данных с магистрали данных ЧТ – вход разрешения выдачи данных из таймера на ШД ТИ0.ТИ2 – тактовые входы каналов таймера Р0. 0й канал 1го таймера запрограммирован на работу в режиме 5 схемотехнически управляемый строб.
49409. Устройство сбора телеметрической информации 713 KB
  Конструктивная реализация устройства включает в себя 30 модулей аналогового ввода с подключенными к ним дешифраторами, основной микроконтроллерный модуль, включающий в себя микроконтроллер, а так же при необходимости и дополнительную память (ОЗУ).
49410. Разработка процесса разделения углеводородной смеси 175 KB
  Задание на курсовое проектирование Дисциплина: Основы проектирования и оборудование предприятий органического синтеза Студент: Новокрещенова Наталья Сергеевна Тема: Разработка технологического процесса для разделения углеводородной смеси заданного состава Исходные данные: 1. В результате чего выходящие из аппарата пары представляют собой почти чистый НК. Часть конденсата возвращаемая на орошение аппарата называется флегмой другая часть отводится в качестве дистиллята. Она заключается в конденсации газов и последующей ректификации...
49411. Разработка системы применения удобрений на примере хозяйства Воронежской области 1.47 MB
  Тимирязева Кафедра агрономической и биологической химии Курсовая работа Разработка системы применения удобрений на примере хозяйства Воронежской области Выполнил студент IV курса Факультета почвоведения агрохимии и экологии 44 гр. Производственные показатели для составления системы применения удобрений Выход навоза заготовка хранение и технология внесения органических удобрений. Технология внесения органических удобрений.
49412. Проблемная разработка рациональной системы применения удобрений в совхозе «Динамо» Тамбовской области 858 KB
  Производственные показатели для составления системы применения удобрений Выход навоза заготовка хранение и технология внесение органических удобрений Составление системы применения удобрений в севообороте при заданной обеспеченности 1 га...
49413. Проблемная разработка рациональной системы применения удобрений во Владимирской области 892.5 KB
  Проблемная разработка рациональной системы применения удобрений во Владимирской области. Производственные показатели для составления системы применения удобрений Выход навоза заготовка хранение и технология внесение органических удобрений Составление системы применения удобрений в севообороте при заданной обеспеченности 1 га пашни минеральными удобрениями...