41620

Решение задачи Дирихле для уравнения Пуассона методом Чебышева

Лабораторная работа

Информатика, кибернетика и программирование

Разностную задачу 5 будем решать явным итерационным методом с чебышевским набором параметров который выражается следующей формулой: 10 где заданное число итераций . 11 Результаты: В вычислениях использовался следующий алгоритм: Задаём количество итераций полагаем тогда шаг сетки =01. Полученный ответ с точностью до...

Русский

2013-10-24

103.07 KB

45 чел.

Федеральное государственное бюджетное образовательное

учреждение высшего профессионального образования

Уфимский государственный авиационный технический университет

Лабораторная работа №5

по дисциплине «Численные методы»

На тему: «Решение задачи Дирихле для уравнения Пуассона

методом Чебышева»

Выполнил:

студент группы ПМ-335

Ямилев И.М.

Проверил:

Голичев И.И.

Уфа

2012

Отчёт по лабораторной работе № 5.

 

Задача:

Явным методом Чебышева требуется найти приближённое решение уравнения

                                                                                  (1)

в квадрате с краевыми условиями

                                                           ,                                                        (2)

где – граница квадрата .

Выбираем функцию, удовлетворяющую краевым условиям (2)

.

Вычислим

.

Возьмём по определению в качестве правой части уравнения (1)

,

тогда нам известно точное решение задачи (1), (2).

Теория:

От задачи (1), (2) перейдём к разностной. Вводим на плоскости прямоугольную сетку с шагом по направлению и по направлению . Получим , . Обозначим .

Обозначим через множество внутренних узлов сетки, то есть

,

а через – множество граничных узлов, то есть

.

Пусть далее

Рассмотрим конечномерное пространство функции , заданных на сетке . Здесь и будем обозначать . Обозначим

.

Тогда разностный оператор Лапласа записывается в виде

                                               .                                        (3)

Разностное выражение (3) называется пятиточечным разностным шаблоном, так как содержит значения функции в пяти точках сетки, а именно в точках . Указанное множество точек называется шаблоном разностного оператора Лапласа.

Заменим исходную задачу разностной задачей. При этом будем считать, что , тогда . Разностная аппроксимация задачи (1), (2), принимает вид

                                               ,                                        (4)

или более подробно

                               ,                       (5)

.

Обозначим через пространство функций , заданных на и равных нулю на границе со скалярным произведением

                                                   .                                      (6)

В пространстве определим оператор

                                                .                                       (7)

Тогда уравнение (5) можно записать в операторной форме

                                                               ,                                               (8)

где – функция, заданная на сетке и . Сеточные функции и будем рассматривать как вектора – мерного пространства с координатами .

Наименьшее  и наибольшее собственные значения оператора равны

,

                 (9)

.

Разностную задачу (5) будем решать явным итерационным методом с чебышевским набором параметров, который выражается следующей формулой:

                                                   ,                                   (10)

где , -заданное число итераций,

             .         (11)


Результаты:

В вычислениях использовался следующий алгоритм:

  1.  Задаём количество итераций , полагаем , тогда шаг сетки =0,1.
  2.  По формулам (9), (11) вычисляем , .
  3.  Вычисляем и по формулам (11).
  4.  Полагая , последовательно применяя формулу (10), находим .
  5.  Пункт 4 повторяем, полагая
  6.  Итерационный процесс продолжаем до совпадения первых четырех знаков в последних итерациях по циклам.

Полученный ответ с точностью до четвертой цифры получен после 50 итераций:

Точка

Точное значение функции

Значение после 40 итераций

Значение после 50 итераций

(0.1, 0.1)

0.0081

0.0080999

0.0081

(0.1, 0.2)

0.0144

0.0144

0.0144

(0.1, 0.3)

0.0189

0.0189

0.0189

(0.1, 0.4)

0.0216

0.0216

0.0216

(0.1, 0.5)

0.0225

0.0225

0.0225

(0.1, 0.6)

0.0216

0.0216

0.0216

(0.1, 0.7)

0.0189

0.0189

0.0189

(0.1, 0.8)

0.0144

0.0144

0.0144

(0.1, 0.9)

0.0081

0.0080999

0.0081

(0.2, 0.1)

0.0144

0.0144

0.0144

(0.2, 0.2)

0.0256

0.0256

0.0256

(0.2, 0.3)

0.0336

0.033599

0.0336

(0.2, 0.4)

0.0384

0.038399

0.0384

(0.2, 0.5)

0.04

0.039999

0.04

(0.2, 0.6)

0.0384

0.038399

0.0384

(0.2, 0.7)

0.0336

0.033599

0.0336

(0.2, 0.8)

0.0256

0.0256

0.0256

(0.2, 0.9)

0.0144

0.0144

0.0144

(0.3, 0.1)

0.0189

0.0189

0.0189

(0.3, 0.2)

0.0336

0.033599

0.0336

(0.3, 0.3)

0.0441

0.044099

0.0441

(0.3, 0.4)

0.0504

0.050399

0.0504

(0.3, 0.5)

0.0525

0.052499

0.0525

(0.3, 0.6)

0.0504

0.050399

0.0504

(0.3, 0.7)

0.0441

0.044099

0.0441

(0.3, 0.8)

0.0336

0.033599

0.0336

(0.3, 0.9)

0.0189

0.0189

0.0189

(0.4, 0.1)

0.0216

0.0216

0.0216

(0.4, 0.2)

0.0384

0.038399

0.0384

(0.4, 0.3)

0.0504

0.050399

0.0504

(0.4, 0.4)

0.0576

0.057599

0.0576

(0.4, 0.5)

0.06

0.059999

0.06

(0.4, 0.6)

0.0576

0.057599

0.0576

(0.4, 0.7)

0.0504

0.050399

0.0504

(0.4, 0.8)

0.0384

0.038399

0.0384

(0.4, 0.9)

0.0216

0.0216

0.0216

(0.5, 0.1)

0.0225

0.0225

0.0225

(0.5, 0.2)

0.04

0.039999

0.04

(0.5, 0.3)

0.0525

0.052499

0.0525

(0.5, 0.4)

0.06

0.059999

0.06

(0.5, 0.5)

0.0625

0.062499

0.0625

(0.5, 0.6)

0.06

0.059999

0.06

(0.5, 0.7)

0.0525

0.052499

0.0525

(0.5, 0.8)

0.04

0.039999

0.04

(0.5, 0.9)

0.0225

0.0225

0.0225

(0.6, 0.1)

0.0216

0.0216

0.0216

(0.6, 0.2)

0.0384

0.038399

0.0384

(0.6, 0.3)

0.0504

0.050399

0.0504

(0.6, 0.4)

0.0576

0.057599

0.0576

(0.6, 0.5)

0.06

0.059999

0.06

(0.6, 0.6)

0.0576

0.057599

0.0576

(0.6, 0.7)

0.0504

0.050399

0.0504

(0.6, 0.8)

0.0384

0.038399

0.0384

(0.6, 0.9)

0.0216

0.0216

0.0216

(0.7, 0.1)

0.0189

0.0189

0.0189

(0.7, 0.2)

0.0336

0.033599

0.0336

(0.7, 0.3)

0.0441

0.044099

0.0441

(0.7, 0.4)

0.0504

0.050399

0.0504

(0.7, 0.5)

0.0525

0.052499

0.0525

(0.7, 0.6)

0.0504

0.050399

0.0504

(0.7, 0.7)

0.0441

0.044099

0.0441

(0.7, 0.8)

0.0336

0.033599

0.0336

(0.7, 0.9)

0.0189

0.0189

0.0189

(0.8, 0.1)

0.0144

0.0144

0.0144

(0.8, 0.2)

0.0256

0.0256

0.0256

(0.8, 0.3)

0.0336

0.033599

0.0336

(0.8, 0.4)

0.0384

0.038399

0.0384

(0.8, 0.5)

0.04

0.039999

0.04

(0.8, 0.6)

0.0384

0.038399

0.0384

(0.8, 0.7)

0.0336

0.033599

0.0336

(0.8, 0.8)

0.0256

0.0256

0.0256

(0.8, 0.9)

0.0144

0.0144

0.0144

(0.9, 0.1)

0.0081

0.0080999

0.0081

(0.9, 0.2)

0.0144

0.0144

0.0144

(0.9, 0.3)

0.0189

0.0189

0.0189

(0.9, 0.4)

0.0216

0.0216

0.0216

(0.9, 0.5)

0.0225

0.0225

0.0225

(0.9, 0.6)

0.0216

0.0216

0.0216

(0.9, 0.7)

0.0189

0.0189

0.0189

(0.9, 0.8)

0.0144

0.0144

0.0144

(0.9, 0.9)

0.0081

0.0080999

0.0081


 

А также другие работы, которые могут Вас заинтересовать

39447. Цифровая система передачи (ИКМ-120 или ИКМ-480) 397 KB
  В состав аппаратуры ИКМ120у входят аналогоцифровое оборудование формирования стандартных первичных цифровых потоков АЦО оборудование вторичного временного группообразования ВВГ оконечное оборудование линейного тракта ОЛТ необслуживаемые регенерационные пункты НРП. Оконечное оборудование линейного тракта обеспечивает согласование выхода оборудования ВВГ с линейным трактом дистанционное питание НРП телеконтроль и сигнализацию о состоянии линейного тракта служебную связь между оконечными и промежуточными пунктами. Оборудование НРП...
39450. Создание качественных каналов и связи на направлении МИНСК-ГОМЕЛЬ (через БОБРУЙСК) 393 KB
  Расчетная частота кГц 17186 Номинальное затухание участка регенерации дБ 65 Номинальное значение тока ДП мА 200 Допустимое отклонение тока ДП мА 10 Допустимые значения напряжения ДП В 401300В650В относительно земли Максимальное расстояние ОРПОРП 200 км Максимальное число НРП между ОРП 66 Максимальное число НРП в полу секции ДП 33 Комплекс аппаратуры третичной ЦСП ИКМ 480 предназначен для организации на внутризоновых и магистральной сетях связи пучков каналов по кабелю МКТ 4 с парами 12 46 мм. ВВГ оборудование вторичного...
39451. ОПИСАНИЕ ПРИНЦИПА СТРУКТУРНОЙ ЭЛЕКТРИЧЕСКОЙ СХЕМЫ УСТРОЙСТВА СДВИГА ДВОИЧНЫХ ЧИСЕЛ 369.29 KB
  Операция сдвига широко используется в современной вычислительной технике для реализации умножения деления нормализации двоичных чисел с плавающей точкой и т. Поэтому даже в самых ранних ЭВМ использовались так называемые сдвигающие регистры. Такие регистры применяются и в новейших машинах но наряду с ними стали использоваться и комбинационные многоразрядные программируемые сдвигатели Целью данного курсового проекта является формирование начальных умений и навыков самостоятельного проектирования цифровых устройств углубление и...
39452. Создание ЦЛП на направлении Витебск – Бегомль – Лепель 348 KB
  В состав аппаратуры ИКМ120 входят: оборудование вторичного временного группооброзования ВВГ оконечное оборудование линейного тракта ОЛТ необслуживаемые регенерационные пункты НРП а также комплект контрольноизмерительных приборов КИП таких как пульт для испытания линейных трактов и регенераторов ПИЛТ пульт настройки и проверки регенераторов ПНПР пульт измерения затухания кабельной линии ИЗКЛ. Таблица 1 Основные параметры системы передачи Параметр Значение параметра Число организуемых каналов 120 Скорость передачи информации...
39454. Правоотношения: понятие, виды, структура 133.5 KB
  Правовые отношения, проблема их понятия и содержания является одной из фундаментальных проблем теории права и юридической науки в целом. Её значение в регулировании всех отраслей права неоспоримо