41620

Решение задачи Дирихле для уравнения Пуассона методом Чебышева

Лабораторная работа

Информатика, кибернетика и программирование

Разностную задачу 5 будем решать явным итерационным методом с чебышевским набором параметров который выражается следующей формулой: 10 где заданное число итераций . 11 Результаты: В вычислениях использовался следующий алгоритм: Задаём количество итераций полагаем тогда шаг сетки =01. Полученный ответ с точностью до...

Русский

2013-10-24

103.07 KB

45 чел.

Федеральное государственное бюджетное образовательное

учреждение высшего профессионального образования

Уфимский государственный авиационный технический университет

Лабораторная работа №5

по дисциплине «Численные методы»

На тему: «Решение задачи Дирихле для уравнения Пуассона

методом Чебышева»

Выполнил:

студент группы ПМ-335

Ямилев И.М.

Проверил:

Голичев И.И.

Уфа

2012

Отчёт по лабораторной работе № 5.

 

Задача:

Явным методом Чебышева требуется найти приближённое решение уравнения

                                                                                  (1)

в квадрате с краевыми условиями

                                                           ,                                                        (2)

где – граница квадрата .

Выбираем функцию, удовлетворяющую краевым условиям (2)

.

Вычислим

.

Возьмём по определению в качестве правой части уравнения (1)

,

тогда нам известно точное решение задачи (1), (2).

Теория:

От задачи (1), (2) перейдём к разностной. Вводим на плоскости прямоугольную сетку с шагом по направлению и по направлению . Получим , . Обозначим .

Обозначим через множество внутренних узлов сетки, то есть

,

а через – множество граничных узлов, то есть

.

Пусть далее

Рассмотрим конечномерное пространство функции , заданных на сетке . Здесь и будем обозначать . Обозначим

.

Тогда разностный оператор Лапласа записывается в виде

                                               .                                        (3)

Разностное выражение (3) называется пятиточечным разностным шаблоном, так как содержит значения функции в пяти точках сетки, а именно в точках . Указанное множество точек называется шаблоном разностного оператора Лапласа.

Заменим исходную задачу разностной задачей. При этом будем считать, что , тогда . Разностная аппроксимация задачи (1), (2), принимает вид

                                               ,                                        (4)

или более подробно

                               ,                       (5)

.

Обозначим через пространство функций , заданных на и равных нулю на границе со скалярным произведением

                                                   .                                      (6)

В пространстве определим оператор

                                                .                                       (7)

Тогда уравнение (5) можно записать в операторной форме

                                                               ,                                               (8)

где – функция, заданная на сетке и . Сеточные функции и будем рассматривать как вектора – мерного пространства с координатами .

Наименьшее  и наибольшее собственные значения оператора равны

,

                 (9)

.

Разностную задачу (5) будем решать явным итерационным методом с чебышевским набором параметров, который выражается следующей формулой:

                                                   ,                                   (10)

где , -заданное число итераций,

             .         (11)


Результаты:

В вычислениях использовался следующий алгоритм:

  1.  Задаём количество итераций , полагаем , тогда шаг сетки =0,1.
  2.  По формулам (9), (11) вычисляем , .
  3.  Вычисляем и по формулам (11).
  4.  Полагая , последовательно применяя формулу (10), находим .
  5.  Пункт 4 повторяем, полагая
  6.  Итерационный процесс продолжаем до совпадения первых четырех знаков в последних итерациях по циклам.

Полученный ответ с точностью до четвертой цифры получен после 50 итераций:

Точка

Точное значение функции

Значение после 40 итераций

Значение после 50 итераций

(0.1, 0.1)

0.0081

0.0080999

0.0081

(0.1, 0.2)

0.0144

0.0144

0.0144

(0.1, 0.3)

0.0189

0.0189

0.0189

(0.1, 0.4)

0.0216

0.0216

0.0216

(0.1, 0.5)

0.0225

0.0225

0.0225

(0.1, 0.6)

0.0216

0.0216

0.0216

(0.1, 0.7)

0.0189

0.0189

0.0189

(0.1, 0.8)

0.0144

0.0144

0.0144

(0.1, 0.9)

0.0081

0.0080999

0.0081

(0.2, 0.1)

0.0144

0.0144

0.0144

(0.2, 0.2)

0.0256

0.0256

0.0256

(0.2, 0.3)

0.0336

0.033599

0.0336

(0.2, 0.4)

0.0384

0.038399

0.0384

(0.2, 0.5)

0.04

0.039999

0.04

(0.2, 0.6)

0.0384

0.038399

0.0384

(0.2, 0.7)

0.0336

0.033599

0.0336

(0.2, 0.8)

0.0256

0.0256

0.0256

(0.2, 0.9)

0.0144

0.0144

0.0144

(0.3, 0.1)

0.0189

0.0189

0.0189

(0.3, 0.2)

0.0336

0.033599

0.0336

(0.3, 0.3)

0.0441

0.044099

0.0441

(0.3, 0.4)

0.0504

0.050399

0.0504

(0.3, 0.5)

0.0525

0.052499

0.0525

(0.3, 0.6)

0.0504

0.050399

0.0504

(0.3, 0.7)

0.0441

0.044099

0.0441

(0.3, 0.8)

0.0336

0.033599

0.0336

(0.3, 0.9)

0.0189

0.0189

0.0189

(0.4, 0.1)

0.0216

0.0216

0.0216

(0.4, 0.2)

0.0384

0.038399

0.0384

(0.4, 0.3)

0.0504

0.050399

0.0504

(0.4, 0.4)

0.0576

0.057599

0.0576

(0.4, 0.5)

0.06

0.059999

0.06

(0.4, 0.6)

0.0576

0.057599

0.0576

(0.4, 0.7)

0.0504

0.050399

0.0504

(0.4, 0.8)

0.0384

0.038399

0.0384

(0.4, 0.9)

0.0216

0.0216

0.0216

(0.5, 0.1)

0.0225

0.0225

0.0225

(0.5, 0.2)

0.04

0.039999

0.04

(0.5, 0.3)

0.0525

0.052499

0.0525

(0.5, 0.4)

0.06

0.059999

0.06

(0.5, 0.5)

0.0625

0.062499

0.0625

(0.5, 0.6)

0.06

0.059999

0.06

(0.5, 0.7)

0.0525

0.052499

0.0525

(0.5, 0.8)

0.04

0.039999

0.04

(0.5, 0.9)

0.0225

0.0225

0.0225

(0.6, 0.1)

0.0216

0.0216

0.0216

(0.6, 0.2)

0.0384

0.038399

0.0384

(0.6, 0.3)

0.0504

0.050399

0.0504

(0.6, 0.4)

0.0576

0.057599

0.0576

(0.6, 0.5)

0.06

0.059999

0.06

(0.6, 0.6)

0.0576

0.057599

0.0576

(0.6, 0.7)

0.0504

0.050399

0.0504

(0.6, 0.8)

0.0384

0.038399

0.0384

(0.6, 0.9)

0.0216

0.0216

0.0216

(0.7, 0.1)

0.0189

0.0189

0.0189

(0.7, 0.2)

0.0336

0.033599

0.0336

(0.7, 0.3)

0.0441

0.044099

0.0441

(0.7, 0.4)

0.0504

0.050399

0.0504

(0.7, 0.5)

0.0525

0.052499

0.0525

(0.7, 0.6)

0.0504

0.050399

0.0504

(0.7, 0.7)

0.0441

0.044099

0.0441

(0.7, 0.8)

0.0336

0.033599

0.0336

(0.7, 0.9)

0.0189

0.0189

0.0189

(0.8, 0.1)

0.0144

0.0144

0.0144

(0.8, 0.2)

0.0256

0.0256

0.0256

(0.8, 0.3)

0.0336

0.033599

0.0336

(0.8, 0.4)

0.0384

0.038399

0.0384

(0.8, 0.5)

0.04

0.039999

0.04

(0.8, 0.6)

0.0384

0.038399

0.0384

(0.8, 0.7)

0.0336

0.033599

0.0336

(0.8, 0.8)

0.0256

0.0256

0.0256

(0.8, 0.9)

0.0144

0.0144

0.0144

(0.9, 0.1)

0.0081

0.0080999

0.0081

(0.9, 0.2)

0.0144

0.0144

0.0144

(0.9, 0.3)

0.0189

0.0189

0.0189

(0.9, 0.4)

0.0216

0.0216

0.0216

(0.9, 0.5)

0.0225

0.0225

0.0225

(0.9, 0.6)

0.0216

0.0216

0.0216

(0.9, 0.7)

0.0189

0.0189

0.0189

(0.9, 0.8)

0.0144

0.0144

0.0144

(0.9, 0.9)

0.0081

0.0080999

0.0081


 

А также другие работы, которые могут Вас заинтересовать

38746. ПАТОФИЗИОЛОГИЯ ВЫСШЕЙ НЕРВНОЙ ДЕЯТЕЛЬНОСТИ 137.5 KB
  Причиной в развитии невроза следует считать психическую травматизацию. Так например наличие подвижных установок к меняющимся условиям среды является фактором препятствующим возникновению невроза или способствующим успешному разрешению невротического конфликта. Таким образом можно дать и такое определение невроза. Пятый метод получения невроза в эксперименте основан на перенапряжении нервной деятельности в результате нарушения сложных отношений в стаде животных.
38747. Обеспечение защиты при косвенном прикосновении при электроснабжении от источников бесперебойного питания статического типа в установках с системами заземления TN и IT с применением автоматического отключения питания 2.09 MB
  Последнее время всё большее распространение получают технологии и агрегаты, требующие бесперебойного электроснабжения. Перерыв электроснабжения ответственных потребителей может за собой опасность для жизни людей, угрозу для безопасности государства, значительный материальный ущерб, расстройство сложного технологического процесса, Для предотвращения нарушения питания таких электроприемников должно предусматриваться дополнительное питание от независимого источника питания.
38748. Экономика фирмы. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ 247.5 KB
  68 Экономика программа Экономика фирмы подготовка и защита магистерской диссертации Ижевск 2012 УДК 330:001. Рецензент: Редакция авторов В методических рекомендациях рассмотрены вопросы организации итоговой аттестации магистрантов требования к подготовке выполнению и защите магистерской диссертации. Выбор и формулировка темы магистерской диссертации. Утверждение темы магистерской диссертации.
38749. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ МАГИСТЕРСКОЙ ДИССЕРТАЦИИ ПО НАПРАВЛЕНИЮ МЕНЕДЖМЕНТ 465 KB
  Шубин МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ МАГИСТЕРСКОЙ ДИССЕРТАЦИИ ПО НАПРАВЛЕНИЮ 080200 МЕНЕДЖМЕНТ Рекомендовано к изданию Редакционноиздательским советом института ОБНИНСК 2011 УДК 336 Методические указания по выполнению магистерской диссертации по направлению 080200 Менеджмент Сост. Методические рекомендации предназначены для студентов очной очнозаочной и заочной форм обучения по магистерским образовательным программам направления 080200 Менеджмент для оказания помощи при подготовке выпускной квалификационной работы ...
38750. МЕТОДИЧЕСКИЕ УКАЗАНИЯ. Менеджмент 320 KB
  БОРЗЕНЕЦ МЕТОДИЧЕСКИЕ УКАЗАНИЯ по подготовке и защите магистерской диссертации Направление менеджмент 080200. Методические указания по подготовке и защите магистерской диссертации: направление менеджмент 080200.36 Методические указания предназначены для оказания помощи студентам первого и второго года обучения в магистратуре по организации научных исследований и написанию магистерской диссертации на соискание степени магистра по направлению менеджмент 080200. Контроль за написанием магистерской диссертации [2] Организация работы по выполнению...
38752. СИЛА МОМЕНТА РУКОВОДСТВО ПО ДУХОВНОМУ ПРОСВЕТЛЕНИЮ 986.5 KB
  ДИКАРЛО ВВЕДЕНИЕ ПЕРВОПРИЧИНА ЭТОЙ КНИГИ ИСТИНА КОТОРАЯ ВНУТРИ ТЕБЯ ГЛАВА ПЕРВАЯ: ТЫ ЭТО НЕ ТВОЙ УМ САМОЕ БОЛЬШОЕ ПРЕПЯТСТВИЕ НА ПУТИ К ПРОСВЕТЛЕНИЮ ОСВОБОЖДЕНИЕ СЕБЯ ОТ УМА ПРОСВЕТЛЕНИЕ: ВОСХОЖДЕНИЕ НАД МЫШЛЕНИЕМ ЭМОЦИЯ: РЕАКЦИЯ ТЕЛА НА СОСТОЯНИЕ УМА ГЛАВА ВТОРАЯ: СОЗНАНИЕ: ПУТЬ ПРОЧЬ ОТ БОЛИ ПЕРЕСТАНЬ СОЗДАВАТЬ БОЛЬ В НАСТОЯЩЕМ БОЛЬ ИЗ ПРОШЛОГО: РАСТВОРЕНИЕ ТЕЛА БОЛИ ОТОЖДЕСТВЛЕНИЕ ЭГО С ТЕЛОМ БОЛИ ПЕРВОПРИЧИНА СТРАХА КАК ЭГО ИЩЕТ ЦЕЛОСТНОСТЬ ГЛАВА ТРЕТЬЯ: УГЛУБЛЯЯСЬ В МОМЕНТ СЕЙЧАС НЕ ИЩИ СЕБЯ В УМЕ ПОКОНЧИ С ИЛЛЮЗИЕЙ ВРЕМЕНИ НИЧТО НЕ...