41622

Решение первой начальной краевой задачи для уравнения теплопроводности по схеме Кранка-Николсона

Лабораторная работа

Физика

Задача: Используя метод простых итераций метод Чебышева и метод наискорейшего спуска найти по схеме КранкаНиколсона приближенное решение задачи: 1 2...

Русский

2013-10-24

102.29 KB

21 чел.

Федеральное государственное бюджетное образовательное

учреждение высшего профессионального образования

Уфимский государственный авиационный технический университет

Лабораторная работа №6

по дисциплине «Численные методы»

На тему: «Решение первой начальной краевой задачи для уравнения теплопроводности по схеме Кранка-Николсона»

Выполнил:

студент группы ПМ-335

Ямилев И.М.

Проверил:

Голичев И.И.

Уфа

2012

Отчёт по лабораторной работе № 6.

 

Задача:

Используя метод простых итераций, метод Чебышева и метод наискорейшего спуска найти по схеме Кранка-Николсона приближенное решение задачи:

                                                                              (1)

                                                                                                  (2)

                                                                                                     (3)

Пусть , где (n- номер варианта). Найти , при которых является точным решением задачи (1) – (3). При найденных и  найти приближенное решение задачи (1) – (3), используя схему Кранка-Николсона и перечисленные выше методы решения стационарных задач.

Теория:

Сведем задачу к разностной задаче, используя схему Кранка-Николсона и разностное приближение оператора Лапласа.

                                        ,                                      (4)

                                                        ,                                                      (5)

                                                     ,                                                      (6)

где

Из (4) получим, что обозначая получим операторное уравнение где Таким образом, решение задачи (4) – (6) сводится к последовательному решению операторных уравнений

                                                                                                 (7)

на временной сетке (по временным слоям). Для собственных значений оператора получаем оценки

                                        

                          (8)

                                     

Решение уравнения (7) при фиксированном (на временном слое ) будем искать итерационными методами

                                                                                           (9)

полагая где – последняя итерация на предыдущем временном слое.

  1.  Алгоритм метода простых итераций

В итерационном процессе (9) полагаем . Учитывая (8), получаем

                                   .                                                  (10)

Итерационный процесс (9) принимает вид:

                                                         (11)

                                                                               

Полагая получим .

  1.  Алгоритм метода Чебышева

В итерационном процессе (9) вычисляется по формуле

                                                                 (12)

где вычисляется по формуле (10), а

                                                    (13)

Здесь N фиксированный параметр, например можно положить N=10. По формуле

                                                           (14)

и находим Далее повторяем итерационный процесс (14), полагая . Процесс продолжаем до совпадения первых четырех знаков в последних итерациях.


  1.  Алгоритм метода скорейшего спуска

Итерационный процесс  осуществляется по формуле (14), где параметры вычисляются по формуле

В новых обозначениях (14) можно записать в виде:


Результаты:

Необходимо решить задачу:

Искомая функция

Полученные функции f и g:

.

Требуется вычислить значение приближенной функции  во всех точках в момент времени . Шаг по времени Точность приближения – .

Метод простых итераций дал ответ с заданной точностью после 6 итераций, метод Чебышева – после 15, метод скорейшего спуска – после 6.

Точка

Точное значение функции

Простые итерации

Метод Чебышева

Метод скорейшего спуска

Значение после 5 итераций

Значение после 6 итераций

Значение после 10 итераций

Значение после 15 итераций

Значение после 5 итераций

Значение после 6 итераций

(0.1, 0.1)

0.028272

0.027528

0.027616

0.028207

0.028276

0.02721

0.027294

(0.1, 0.2)

0.050261

0.054254

0.054431

0.055564

0.055689

0.053613

0.053794

(0.1, 0.3)

0.065967

0.078479

0.078736

0.08029

0.080451

0.077561

0.077832

(0.1, 0.4)

0.075391

0.098598

0.0989

0.1007

0.10086

0.097507

0.097832

(0.1, 0.5)

0.078533

0.11272

0.11302

0.11486

0.11501

0.11158

0.11191

(0.1, 0.6)

0.075391

0.11858

0.11886

0.12057

0.12069

0.1175

0.11782

(0.1, 0.7)

0.065967

0.11366

0.11391

0.11535

0.11545

0.11271

0.113

(0.1, 0.8)

0.050261

0.095178

0.095385

0.096453

0.09652

0.094422

0.094671

(0.1, 0.9)

0.028272

0.059582

0.059701

0.06028

0.060315

0.059135

0.059294

(0.2, 0.1)

0.055547

0.051741

0.051891

0.052958

0.053069

0.051169

0.051309

(0.2, 0.2)

0.09875

0.1019

0.10221

0.10425

0.10445

0.10075

0.10106

(0.2, 0.3)

0.12961

0.14721

0.14765

0.15044

0.15069

0.14557

0.14602

(0.2, 0.4)

0.14813

0.18459

0.1851

0.1883

0.18856

0.18265

0.18319

(0.2, 0.5)

0.1543

0.21042

0.21092

0.21415

0.21438

0.20843

0.20897

(0.2, 0.6)

0.14813

0.22039

0.22083

0.2238

0.22397

0.21854

0.21902

(0.2, 0.7)

0.12961

0.20972

0.21011

0.21259

0.21272

0.20814

0.20856

(0.2, 0.8)

0.09875

0.17346

0.17377

0.1756

0.17569

0.17221

0.17257

(0.2, 0.9)

0.055547

0.10613

0.10632

0.10731

0.10735

0.1054

0.10563

(0.3, 0.1)

0.080573

0.073158

0.073337

0.07469

0.074805

0.072411

0.072582

(0.3, 0.2)

0.14324

0.14409

0.14446

0.14704

0.14724

0.14259

0.14297

(0.3, 0.3)

0.188

0.20814

0.20867

0.21217

0.21242

0.206

0.20656

(0.3, 0.4)

0.21486

0.26093

0.26152

0.2655

0.26573

0.25844

0.25909

(0.3, 0.5)

0.22381

0.29729

0.29783

0.30178

0.30197

0.29477

0.29539

(0.3, 0.6)

0.21486

0.31102

0.31146

0.31502

0.31515

0.30875

0.30926

(0.3, 0.7)

0.188

0.2953

0.29566

0.29861

0.29869

0.29341

0.29382

(0.3, 0.8)

0.14324

0.24319

0.24347

0.24565

0.24569

0.24173

0.24208

(0.3, 0.9)

0.080573

0.14762

0.1478

0.14897

0.149

0.14676

0.147

(0.4, 0.1)

0.10177

0.091289

0.091461

0.092896

0.092986

0.090455

0.090633

(0.4, 0.2)

0.18092

0.17993

0.18028

0.18301

0.18316

0.17824

0.17864

(0.4, 0.3)

0.23746

0.26014

0.26064

0.26433

0.2645

0.25776

0.25835

(0.4, 0.4)

0.27138

0.32652

0.32705

0.33118

0.33131

0.32377

0.32443

(0.4, 0.5)

0.28269

0.37254

0.37299

0.37702

0.3771

0.36985

0.37043

(0.4, 0.6)

0.27138

0.39038

0.39068

0.39425

0.39428

0.38803

0.38845

(0.4, 0.7)

0.23746

0.37127

0.37148

0.37442

0.37441

0.36938

0.36967

(0.4, 0.8)

0.18092

0.30621

0.30638

0.30856

0.30856

0.30475

0.30501

(0.4, 0.9)

0.10177

0.18607

0.18619

0.18739

0.18739

0.1852

0.1854

(0.5, 0.1)

0.11716

0.10487

0.105

0.10636

0.10642

0.10406

0.10421

(0.5, 0.2)

0.20828

0.20694

0.20722

0.20981

0.20991

0.2053

0.20565

(0.5, 0.3)

0.27337

0.29976

0.30015

0.30363

0.30373

0.29744

0.29795

(0.5, 0.4)

0.31242

0.37717

0.37755

0.38143

0.38149

0.37456

0.3751

(0.5, 0.5)

0.32544

0.43172

0.43197

0.43573

0.43574

0.42923

0.42964

(0.5, 0.6)

0.31242

0.45423

0.45431

0.45764

0.45762

0.45216

0.45237

(0.5, 0.7)

0.27337

0.43418

0.4342

0.43699

0.43698

0.43255

0.43264

(0.5, 0.8)

0.20828

0.36036

0.36043

0.36257

0.36257

0.35908

0.35921

(0.5, 0.9)

0.11716

0.22071

0.22079

0.222

0.22202

0.21989

0.22004

(0.6, 0.1)

0.1243

0.11186

0.11195

0.11318

0.11322

0.11118

0.11127

(0.6, 0.2)

0.22098

0.22113

0.22132

0.22367

0.22375

0.21972

0.21996

(0.6, 0.3)

0.29003

0.32118

0.32145

0.32464

0.32472

0.3192

0.31955

(0.6, 0.4)

0.33147

0.40563

0.40589

0.40946

0.40953

0.40342

0.40377

(0.6, 0.5)

0.34528

0.46658

0.4667

0.47024

0.47029

0.46456

0.46474

(0.6, 0.6)

0.33147

0.49407

0.49407

0.49733

0.49739

0.49243

0.49242

(0.6, 0.7)

0.29003

0.47629

0.4763

0.47921

0.47928

0.47498

0.47492

(0.6, 0.8)

0.22098

0.39981

0.39991

0.40227

0.40237

0.39862

0.3987

(0.6, 0.9)

0.1243

0.24852

0.24868

0.25005

0.25011

0.2477

0.24787

(0.7, 0.1)

0.1202

0.10947

0.10955

0.11064

0.11069

0.10891

0.10897

(0.7, 0.2)

0.21369

0.21692

0.21712

0.21922

0.21932

0.21574

0.21593

(0.7, 0.3)

0.28047

0.31624

0.31654

0.31945

0.31958

0.31453

0.31484

(0.7, 0.4)

0.32053

0.40143

0.40174

0.40512

0.40526

0.39949

0.39981

(0.7, 0.5)

0.33389

0.46487

0.46512

0.46864

0.46882

0.46302

0.46324

(0.7, 0.6)

0.32053

0.49675

0.49698

0.50045

0.50066

0.49515

0.49526

(0.7, 0.7)

0.28047

0.48489

0.48518

0.48848

0.48873

0.48336

0.48353

(0.7, 0.8)

0.21369

0.41408

0.41453

0.4173

0.41752

0.41256

0.41295

(0.7, 0.9)

0.1202

0.26359

0.26391

0.26557

0.26572

0.26245

0.26285

(0.8, 0.1)

0.10121

0.094129

0.094239

0.095136

0.095191

0.093618

0.093724

(0.8, 0.2)

0.17993

0.18715

0.1874

0.18915

0.18926

0.18606

0.18633

(0.8, 0.3)

0.23616

0.27419

0.27458

0.27707

0.27722

0.27257

0.27303

(0.8, 0.4)

0.2699

0.35037

0.35085

0.35384

0.35404

0.34842

0.34897

(0.8, 0.5)

0.28115

0.40936

0.40988

0.41315

0.4134

0.40732

0.4079

(0.8, 0.6)

0.2699

0.44279

0.44336

0.44676

0.44706

0.44072

0.44133

(0.8, 0.7)

0.23616

0.43968

0.44041

0.44375

0.44406

0.43754

0.4383

(0.8, 0.8)

0.17993

0.38499

0.3857

0.38857

0.38886

0.38277

0.3837

(0.8, 0.9)

0.10121

0.25411

0.25467

0.25637

0.25653

0.2526

0.25332

(0.9, 0.1)

0.06292

0.060768

0.060862

0.061397

0.061435

0.060401

0.060516

(0.9, 0.2)

0.11186

0.12139

0.1216

0.12266

0.12273

0.12061

0.12088

(0.9, 0.3)

0.14681

0.17903

0.17936

0.18088

0.18099

0.17785

0.17829

(0.9, 0.4)

0.16779

0.23074

0.23115

0.23302

0.23317

0.22926

0.22983

(0.9, 0.5)

0.17478

0.27262

0.2731

0.27521

0.27539

0.27096

0.27162

(0.9, 0.6)

0.16779

0.29945

0.30002

0.30225

0.30247

0.29768

0.29842

(0.9, 0.7)

0.14681

0.30409

0.30471

0.30695

0.30718

0.30216

0.30303

(0.9, 0.8)

0.11186

0.2755

0.27618

0.27808

0.27828

0.27365

0.27457

(0.9, 0.9)

0.06292

0.19245

0.19285

0.19399

0.19412

0.19117

0.19182


 

А также другие работы, которые могут Вас заинтересовать

83162. Разработка технологического процесса перевозки промышленных грузов 136.33 KB
  Кроме того, при транспортировке угля необходимо учитывать влажность воздуха, а также обеспечить защиту груза от сырости и влаги. Поэтому, рекомендуется, чтобы перевозка угля осуществлялась в самосвальных полуприцепах. Самосвальный полуприцеп используется для транспортировки сыпучих грузов низкой плотности...
83164. Обзор средств создания интерактивных трехмерных объектов в веб- и мультимедиа-среде 4.58 MB
  Попытки создания систем такого рода были. Но их постигали коммерческие неудачи. Причинами которых можно считать то, что изначально ставились технологические, а не маркетинговые задачи. Разработчики стремились удовлетворить собственные амбиции и любопытство и не думали о целесообразности, о прикладном применении дальше.
83165. ОЦІНКА АДЕКВАТНОСТІ І ТОЧНОСТІ ТРЕНДОВИХ МОДЕЛЕЙ 333 KB
  Перевірки адекватності Гаусової моделі. Перевірка адекватності моделі. Тому завдання попереднього вивчення і створення математичної моделі обєктів стало однією з центральних задач оптимального керування. Ідентифікація є процесом побудови математичної моделі обєкта адекватній обєктові з точністю до заданого критерію.
83166. БУХГАЛТЕРСКИЙ УЧЕТ ОСНОВНЫХ СРЕДСТВ 200 KB
  Целью курсовой работы является изучить теоретический материал, действующие в настоящее время нормативные акты в сфере учета основных средств, быть в курсе последних изменений законодательства, проанализировать на примере деятельность предприятия в данной области бухгалтерского и финансового учета.
83167. Определение доходов и расходов. Их состав и классификация 160 KB
  Уверенность в этом возникает в случае если организация получила в оплату актив либо отсутствует неопределенность в отношении получения актива; право собственности владения пользования и распоряжения на продукцию товар перешло от организации к покупателю или работа принята заказчиком услуга оказана...
83168. Государственная политика различных стран в области заработной платы 167.5 KB
  В данной работе рассмотрены социальные аспекты государственной политики на рынке труда, проблемы и основные тенденции изменения уровня жизни населения как необходимый критерий повышения доходов и заработной платы; проанализирована динамика основных показателей уровня жизни населения, как доходы, расходы, заработная плата...
83169. Финансовый рынок и финансовые институты 226 KB
  Понятие финансового рынка и его инфраструктура Финансовый рынок совокупность отношений связанных с оказанием и потреблением финансовых услуг а также выпуском и обращением финансовых инструментов; это совокупность рыночных институтов механизм перераспределения капитала между кредиторами и заёмщиками при помощи посредников на основе спроса...
83170. Технические и точные нивелиры 657.15 KB
  Устройство нивелира относительно простое. На рисунке 1 изображена классическая конструкция. Трубы А, помещается на подставку В, неподвижно скрепленную со стержнем С. Параллельно трубе крепится цилиндрический уровень D. Стержень входит в подшипник головы инструмента E, что позволяет инструменту вращаться вокруг своей оси.