41622

Решение первой начальной краевой задачи для уравнения теплопроводности по схеме Кранка-Николсона

Лабораторная работа

Физика

Задача: Используя метод простых итераций метод Чебышева и метод наискорейшего спуска найти по схеме КранкаНиколсона приближенное решение задачи: 1 2...

Русский

2013-10-24

102.29 KB

21 чел.

Федеральное государственное бюджетное образовательное

учреждение высшего профессионального образования

Уфимский государственный авиационный технический университет

Лабораторная работа №6

по дисциплине «Численные методы»

На тему: «Решение первой начальной краевой задачи для уравнения теплопроводности по схеме Кранка-Николсона»

Выполнил:

студент группы ПМ-335

Ямилев И.М.

Проверил:

Голичев И.И.

Уфа

2012

Отчёт по лабораторной работе № 6.

 

Задача:

Используя метод простых итераций, метод Чебышева и метод наискорейшего спуска найти по схеме Кранка-Николсона приближенное решение задачи:

                                                                              (1)

                                                                                                  (2)

                                                                                                     (3)

Пусть , где (n- номер варианта). Найти , при которых является точным решением задачи (1) – (3). При найденных и  найти приближенное решение задачи (1) – (3), используя схему Кранка-Николсона и перечисленные выше методы решения стационарных задач.

Теория:

Сведем задачу к разностной задаче, используя схему Кранка-Николсона и разностное приближение оператора Лапласа.

                                        ,                                      (4)

                                                        ,                                                      (5)

                                                     ,                                                      (6)

где

Из (4) получим, что обозначая получим операторное уравнение где Таким образом, решение задачи (4) – (6) сводится к последовательному решению операторных уравнений

                                                                                                 (7)

на временной сетке (по временным слоям). Для собственных значений оператора получаем оценки

                                        

                          (8)

                                     

Решение уравнения (7) при фиксированном (на временном слое ) будем искать итерационными методами

                                                                                           (9)

полагая где – последняя итерация на предыдущем временном слое.

  1.  Алгоритм метода простых итераций

В итерационном процессе (9) полагаем . Учитывая (8), получаем

                                   .                                                  (10)

Итерационный процесс (9) принимает вид:

                                                         (11)

                                                                               

Полагая получим .

  1.  Алгоритм метода Чебышева

В итерационном процессе (9) вычисляется по формуле

                                                                 (12)

где вычисляется по формуле (10), а

                                                    (13)

Здесь N фиксированный параметр, например можно положить N=10. По формуле

                                                           (14)

и находим Далее повторяем итерационный процесс (14), полагая . Процесс продолжаем до совпадения первых четырех знаков в последних итерациях.


  1.  Алгоритм метода скорейшего спуска

Итерационный процесс  осуществляется по формуле (14), где параметры вычисляются по формуле

В новых обозначениях (14) можно записать в виде:


Результаты:

Необходимо решить задачу:

Искомая функция

Полученные функции f и g:

.

Требуется вычислить значение приближенной функции  во всех точках в момент времени . Шаг по времени Точность приближения – .

Метод простых итераций дал ответ с заданной точностью после 6 итераций, метод Чебышева – после 15, метод скорейшего спуска – после 6.

Точка

Точное значение функции

Простые итерации

Метод Чебышева

Метод скорейшего спуска

Значение после 5 итераций

Значение после 6 итераций

Значение после 10 итераций

Значение после 15 итераций

Значение после 5 итераций

Значение после 6 итераций

(0.1, 0.1)

0.028272

0.027528

0.027616

0.028207

0.028276

0.02721

0.027294

(0.1, 0.2)

0.050261

0.054254

0.054431

0.055564

0.055689

0.053613

0.053794

(0.1, 0.3)

0.065967

0.078479

0.078736

0.08029

0.080451

0.077561

0.077832

(0.1, 0.4)

0.075391

0.098598

0.0989

0.1007

0.10086

0.097507

0.097832

(0.1, 0.5)

0.078533

0.11272

0.11302

0.11486

0.11501

0.11158

0.11191

(0.1, 0.6)

0.075391

0.11858

0.11886

0.12057

0.12069

0.1175

0.11782

(0.1, 0.7)

0.065967

0.11366

0.11391

0.11535

0.11545

0.11271

0.113

(0.1, 0.8)

0.050261

0.095178

0.095385

0.096453

0.09652

0.094422

0.094671

(0.1, 0.9)

0.028272

0.059582

0.059701

0.06028

0.060315

0.059135

0.059294

(0.2, 0.1)

0.055547

0.051741

0.051891

0.052958

0.053069

0.051169

0.051309

(0.2, 0.2)

0.09875

0.1019

0.10221

0.10425

0.10445

0.10075

0.10106

(0.2, 0.3)

0.12961

0.14721

0.14765

0.15044

0.15069

0.14557

0.14602

(0.2, 0.4)

0.14813

0.18459

0.1851

0.1883

0.18856

0.18265

0.18319

(0.2, 0.5)

0.1543

0.21042

0.21092

0.21415

0.21438

0.20843

0.20897

(0.2, 0.6)

0.14813

0.22039

0.22083

0.2238

0.22397

0.21854

0.21902

(0.2, 0.7)

0.12961

0.20972

0.21011

0.21259

0.21272

0.20814

0.20856

(0.2, 0.8)

0.09875

0.17346

0.17377

0.1756

0.17569

0.17221

0.17257

(0.2, 0.9)

0.055547

0.10613

0.10632

0.10731

0.10735

0.1054

0.10563

(0.3, 0.1)

0.080573

0.073158

0.073337

0.07469

0.074805

0.072411

0.072582

(0.3, 0.2)

0.14324

0.14409

0.14446

0.14704

0.14724

0.14259

0.14297

(0.3, 0.3)

0.188

0.20814

0.20867

0.21217

0.21242

0.206

0.20656

(0.3, 0.4)

0.21486

0.26093

0.26152

0.2655

0.26573

0.25844

0.25909

(0.3, 0.5)

0.22381

0.29729

0.29783

0.30178

0.30197

0.29477

0.29539

(0.3, 0.6)

0.21486

0.31102

0.31146

0.31502

0.31515

0.30875

0.30926

(0.3, 0.7)

0.188

0.2953

0.29566

0.29861

0.29869

0.29341

0.29382

(0.3, 0.8)

0.14324

0.24319

0.24347

0.24565

0.24569

0.24173

0.24208

(0.3, 0.9)

0.080573

0.14762

0.1478

0.14897

0.149

0.14676

0.147

(0.4, 0.1)

0.10177

0.091289

0.091461

0.092896

0.092986

0.090455

0.090633

(0.4, 0.2)

0.18092

0.17993

0.18028

0.18301

0.18316

0.17824

0.17864

(0.4, 0.3)

0.23746

0.26014

0.26064

0.26433

0.2645

0.25776

0.25835

(0.4, 0.4)

0.27138

0.32652

0.32705

0.33118

0.33131

0.32377

0.32443

(0.4, 0.5)

0.28269

0.37254

0.37299

0.37702

0.3771

0.36985

0.37043

(0.4, 0.6)

0.27138

0.39038

0.39068

0.39425

0.39428

0.38803

0.38845

(0.4, 0.7)

0.23746

0.37127

0.37148

0.37442

0.37441

0.36938

0.36967

(0.4, 0.8)

0.18092

0.30621

0.30638

0.30856

0.30856

0.30475

0.30501

(0.4, 0.9)

0.10177

0.18607

0.18619

0.18739

0.18739

0.1852

0.1854

(0.5, 0.1)

0.11716

0.10487

0.105

0.10636

0.10642

0.10406

0.10421

(0.5, 0.2)

0.20828

0.20694

0.20722

0.20981

0.20991

0.2053

0.20565

(0.5, 0.3)

0.27337

0.29976

0.30015

0.30363

0.30373

0.29744

0.29795

(0.5, 0.4)

0.31242

0.37717

0.37755

0.38143

0.38149

0.37456

0.3751

(0.5, 0.5)

0.32544

0.43172

0.43197

0.43573

0.43574

0.42923

0.42964

(0.5, 0.6)

0.31242

0.45423

0.45431

0.45764

0.45762

0.45216

0.45237

(0.5, 0.7)

0.27337

0.43418

0.4342

0.43699

0.43698

0.43255

0.43264

(0.5, 0.8)

0.20828

0.36036

0.36043

0.36257

0.36257

0.35908

0.35921

(0.5, 0.9)

0.11716

0.22071

0.22079

0.222

0.22202

0.21989

0.22004

(0.6, 0.1)

0.1243

0.11186

0.11195

0.11318

0.11322

0.11118

0.11127

(0.6, 0.2)

0.22098

0.22113

0.22132

0.22367

0.22375

0.21972

0.21996

(0.6, 0.3)

0.29003

0.32118

0.32145

0.32464

0.32472

0.3192

0.31955

(0.6, 0.4)

0.33147

0.40563

0.40589

0.40946

0.40953

0.40342

0.40377

(0.6, 0.5)

0.34528

0.46658

0.4667

0.47024

0.47029

0.46456

0.46474

(0.6, 0.6)

0.33147

0.49407

0.49407

0.49733

0.49739

0.49243

0.49242

(0.6, 0.7)

0.29003

0.47629

0.4763

0.47921

0.47928

0.47498

0.47492

(0.6, 0.8)

0.22098

0.39981

0.39991

0.40227

0.40237

0.39862

0.3987

(0.6, 0.9)

0.1243

0.24852

0.24868

0.25005

0.25011

0.2477

0.24787

(0.7, 0.1)

0.1202

0.10947

0.10955

0.11064

0.11069

0.10891

0.10897

(0.7, 0.2)

0.21369

0.21692

0.21712

0.21922

0.21932

0.21574

0.21593

(0.7, 0.3)

0.28047

0.31624

0.31654

0.31945

0.31958

0.31453

0.31484

(0.7, 0.4)

0.32053

0.40143

0.40174

0.40512

0.40526

0.39949

0.39981

(0.7, 0.5)

0.33389

0.46487

0.46512

0.46864

0.46882

0.46302

0.46324

(0.7, 0.6)

0.32053

0.49675

0.49698

0.50045

0.50066

0.49515

0.49526

(0.7, 0.7)

0.28047

0.48489

0.48518

0.48848

0.48873

0.48336

0.48353

(0.7, 0.8)

0.21369

0.41408

0.41453

0.4173

0.41752

0.41256

0.41295

(0.7, 0.9)

0.1202

0.26359

0.26391

0.26557

0.26572

0.26245

0.26285

(0.8, 0.1)

0.10121

0.094129

0.094239

0.095136

0.095191

0.093618

0.093724

(0.8, 0.2)

0.17993

0.18715

0.1874

0.18915

0.18926

0.18606

0.18633

(0.8, 0.3)

0.23616

0.27419

0.27458

0.27707

0.27722

0.27257

0.27303

(0.8, 0.4)

0.2699

0.35037

0.35085

0.35384

0.35404

0.34842

0.34897

(0.8, 0.5)

0.28115

0.40936

0.40988

0.41315

0.4134

0.40732

0.4079

(0.8, 0.6)

0.2699

0.44279

0.44336

0.44676

0.44706

0.44072

0.44133

(0.8, 0.7)

0.23616

0.43968

0.44041

0.44375

0.44406

0.43754

0.4383

(0.8, 0.8)

0.17993

0.38499

0.3857

0.38857

0.38886

0.38277

0.3837

(0.8, 0.9)

0.10121

0.25411

0.25467

0.25637

0.25653

0.2526

0.25332

(0.9, 0.1)

0.06292

0.060768

0.060862

0.061397

0.061435

0.060401

0.060516

(0.9, 0.2)

0.11186

0.12139

0.1216

0.12266

0.12273

0.12061

0.12088

(0.9, 0.3)

0.14681

0.17903

0.17936

0.18088

0.18099

0.17785

0.17829

(0.9, 0.4)

0.16779

0.23074

0.23115

0.23302

0.23317

0.22926

0.22983

(0.9, 0.5)

0.17478

0.27262

0.2731

0.27521

0.27539

0.27096

0.27162

(0.9, 0.6)

0.16779

0.29945

0.30002

0.30225

0.30247

0.29768

0.29842

(0.9, 0.7)

0.14681

0.30409

0.30471

0.30695

0.30718

0.30216

0.30303

(0.9, 0.8)

0.11186

0.2755

0.27618

0.27808

0.27828

0.27365

0.27457

(0.9, 0.9)

0.06292

0.19245

0.19285

0.19399

0.19412

0.19117

0.19182


 

А также другие работы, которые могут Вас заинтересовать

63245. Урок узагальнення з теми «Еллінізм» 19.64 KB
  Очікувані результати Після цього уроку учні зможуть: називати час політичної роздробленості Греції існування імперії Александра Македонського та елліністичних держав дати правління Філіппа II та Александра Македонського історичних діячів...
63247. Природні умови Італії та виникнення Риму 25.85 KB
  Після цього уроку учні зможуть: називати час виникнень Риму; показувати на карті Апеннінський півострів місто Рим; застосовувати та пояснювати на прикладах поняття та терміни: патриції плебеї сенат; пояснювати причини ліквідації царської влади і встановлення республіки...
63248. Римська республіка V — середини III ст. до нашої ери 34.95 KB
  Мета: розглянути боротьбу плебеїв і патриціїв у Римі визначити вплив її результатів на перетворення Риму на одну з найсильніших держав Західного Середземноморя; дати уявлення про особливості організації влади та суспільного устрою часів Римської республіки.
63250. Урок узагальнення з теми: Давній Рим у VIII—І ст. до нашої ери 23.88 KB
  Після цього уроку учні зможуть: називати час утворення Римської республіки завоювання Римом Італії виникнення Риму війн Риму з Карфагеном установлення диктатури Сулли повстання Спартака першого тріумвірату історичних осіб цієї доби основні джерела рабства...
63251. Диктатура Юлія Цезаря 25.34 KB
  Після цього уроку учні зможуть: називати час громадянської війни в Римі диктатури Гая Юлія Цезаря; показувати на карті напрями походів Гая Юлія Цезаря; застосовувати та пояснювати на прикладах поняття диктатор...
63252. Римська імперія в І—II ст. нашої ери 29.75 KB
  Ознайомитися із системою державного управління що склалася за часів правління Августа; удосконалити вміння давати характеристику історичної особистості. Очікувані Після цього уроку учні зможуть: називати час правління Октавіана Августа органи влади імперії...
63253. Римська культура 27.61 KB
  Мета: ознайомитися з основними досягненнями культури Давнього Риму, простежити звязок між грецькою та римською культурами; удосконалити навички складання плану параграфа; визначити роль римської культури в розвитку світової культури.