41622

Решение первой начальной краевой задачи для уравнения теплопроводности по схеме Кранка-Николсона

Лабораторная работа

Физика

Задача: Используя метод простых итераций метод Чебышева и метод наискорейшего спуска найти по схеме КранкаНиколсона приближенное решение задачи: 1 2...

Русский

2013-10-24

102.29 KB

21 чел.

Федеральное государственное бюджетное образовательное

учреждение высшего профессионального образования

Уфимский государственный авиационный технический университет

Лабораторная работа №6

по дисциплине «Численные методы»

На тему: «Решение первой начальной краевой задачи для уравнения теплопроводности по схеме Кранка-Николсона»

Выполнил:

студент группы ПМ-335

Ямилев И.М.

Проверил:

Голичев И.И.

Уфа

2012

Отчёт по лабораторной работе № 6.

 

Задача:

Используя метод простых итераций, метод Чебышева и метод наискорейшего спуска найти по схеме Кранка-Николсона приближенное решение задачи:

                                                                              (1)

                                                                                                  (2)

                                                                                                     (3)

Пусть , где (n- номер варианта). Найти , при которых является точным решением задачи (1) – (3). При найденных и  найти приближенное решение задачи (1) – (3), используя схему Кранка-Николсона и перечисленные выше методы решения стационарных задач.

Теория:

Сведем задачу к разностной задаче, используя схему Кранка-Николсона и разностное приближение оператора Лапласа.

                                        ,                                      (4)

                                                        ,                                                      (5)

                                                     ,                                                      (6)

где

Из (4) получим, что обозначая получим операторное уравнение где Таким образом, решение задачи (4) – (6) сводится к последовательному решению операторных уравнений

                                                                                                 (7)

на временной сетке (по временным слоям). Для собственных значений оператора получаем оценки

                                        

                          (8)

                                     

Решение уравнения (7) при фиксированном (на временном слое ) будем искать итерационными методами

                                                                                           (9)

полагая где – последняя итерация на предыдущем временном слое.

  1.  Алгоритм метода простых итераций

В итерационном процессе (9) полагаем . Учитывая (8), получаем

                                   .                                                  (10)

Итерационный процесс (9) принимает вид:

                                                         (11)

                                                                               

Полагая получим .

  1.  Алгоритм метода Чебышева

В итерационном процессе (9) вычисляется по формуле

                                                                 (12)

где вычисляется по формуле (10), а

                                                    (13)

Здесь N фиксированный параметр, например можно положить N=10. По формуле

                                                           (14)

и находим Далее повторяем итерационный процесс (14), полагая . Процесс продолжаем до совпадения первых четырех знаков в последних итерациях.


  1.  Алгоритм метода скорейшего спуска

Итерационный процесс  осуществляется по формуле (14), где параметры вычисляются по формуле

В новых обозначениях (14) можно записать в виде:


Результаты:

Необходимо решить задачу:

Искомая функция

Полученные функции f и g:

.

Требуется вычислить значение приближенной функции  во всех точках в момент времени . Шаг по времени Точность приближения – .

Метод простых итераций дал ответ с заданной точностью после 6 итераций, метод Чебышева – после 15, метод скорейшего спуска – после 6.

Точка

Точное значение функции

Простые итерации

Метод Чебышева

Метод скорейшего спуска

Значение после 5 итераций

Значение после 6 итераций

Значение после 10 итераций

Значение после 15 итераций

Значение после 5 итераций

Значение после 6 итераций

(0.1, 0.1)

0.028272

0.027528

0.027616

0.028207

0.028276

0.02721

0.027294

(0.1, 0.2)

0.050261

0.054254

0.054431

0.055564

0.055689

0.053613

0.053794

(0.1, 0.3)

0.065967

0.078479

0.078736

0.08029

0.080451

0.077561

0.077832

(0.1, 0.4)

0.075391

0.098598

0.0989

0.1007

0.10086

0.097507

0.097832

(0.1, 0.5)

0.078533

0.11272

0.11302

0.11486

0.11501

0.11158

0.11191

(0.1, 0.6)

0.075391

0.11858

0.11886

0.12057

0.12069

0.1175

0.11782

(0.1, 0.7)

0.065967

0.11366

0.11391

0.11535

0.11545

0.11271

0.113

(0.1, 0.8)

0.050261

0.095178

0.095385

0.096453

0.09652

0.094422

0.094671

(0.1, 0.9)

0.028272

0.059582

0.059701

0.06028

0.060315

0.059135

0.059294

(0.2, 0.1)

0.055547

0.051741

0.051891

0.052958

0.053069

0.051169

0.051309

(0.2, 0.2)

0.09875

0.1019

0.10221

0.10425

0.10445

0.10075

0.10106

(0.2, 0.3)

0.12961

0.14721

0.14765

0.15044

0.15069

0.14557

0.14602

(0.2, 0.4)

0.14813

0.18459

0.1851

0.1883

0.18856

0.18265

0.18319

(0.2, 0.5)

0.1543

0.21042

0.21092

0.21415

0.21438

0.20843

0.20897

(0.2, 0.6)

0.14813

0.22039

0.22083

0.2238

0.22397

0.21854

0.21902

(0.2, 0.7)

0.12961

0.20972

0.21011

0.21259

0.21272

0.20814

0.20856

(0.2, 0.8)

0.09875

0.17346

0.17377

0.1756

0.17569

0.17221

0.17257

(0.2, 0.9)

0.055547

0.10613

0.10632

0.10731

0.10735

0.1054

0.10563

(0.3, 0.1)

0.080573

0.073158

0.073337

0.07469

0.074805

0.072411

0.072582

(0.3, 0.2)

0.14324

0.14409

0.14446

0.14704

0.14724

0.14259

0.14297

(0.3, 0.3)

0.188

0.20814

0.20867

0.21217

0.21242

0.206

0.20656

(0.3, 0.4)

0.21486

0.26093

0.26152

0.2655

0.26573

0.25844

0.25909

(0.3, 0.5)

0.22381

0.29729

0.29783

0.30178

0.30197

0.29477

0.29539

(0.3, 0.6)

0.21486

0.31102

0.31146

0.31502

0.31515

0.30875

0.30926

(0.3, 0.7)

0.188

0.2953

0.29566

0.29861

0.29869

0.29341

0.29382

(0.3, 0.8)

0.14324

0.24319

0.24347

0.24565

0.24569

0.24173

0.24208

(0.3, 0.9)

0.080573

0.14762

0.1478

0.14897

0.149

0.14676

0.147

(0.4, 0.1)

0.10177

0.091289

0.091461

0.092896

0.092986

0.090455

0.090633

(0.4, 0.2)

0.18092

0.17993

0.18028

0.18301

0.18316

0.17824

0.17864

(0.4, 0.3)

0.23746

0.26014

0.26064

0.26433

0.2645

0.25776

0.25835

(0.4, 0.4)

0.27138

0.32652

0.32705

0.33118

0.33131

0.32377

0.32443

(0.4, 0.5)

0.28269

0.37254

0.37299

0.37702

0.3771

0.36985

0.37043

(0.4, 0.6)

0.27138

0.39038

0.39068

0.39425

0.39428

0.38803

0.38845

(0.4, 0.7)

0.23746

0.37127

0.37148

0.37442

0.37441

0.36938

0.36967

(0.4, 0.8)

0.18092

0.30621

0.30638

0.30856

0.30856

0.30475

0.30501

(0.4, 0.9)

0.10177

0.18607

0.18619

0.18739

0.18739

0.1852

0.1854

(0.5, 0.1)

0.11716

0.10487

0.105

0.10636

0.10642

0.10406

0.10421

(0.5, 0.2)

0.20828

0.20694

0.20722

0.20981

0.20991

0.2053

0.20565

(0.5, 0.3)

0.27337

0.29976

0.30015

0.30363

0.30373

0.29744

0.29795

(0.5, 0.4)

0.31242

0.37717

0.37755

0.38143

0.38149

0.37456

0.3751

(0.5, 0.5)

0.32544

0.43172

0.43197

0.43573

0.43574

0.42923

0.42964

(0.5, 0.6)

0.31242

0.45423

0.45431

0.45764

0.45762

0.45216

0.45237

(0.5, 0.7)

0.27337

0.43418

0.4342

0.43699

0.43698

0.43255

0.43264

(0.5, 0.8)

0.20828

0.36036

0.36043

0.36257

0.36257

0.35908

0.35921

(0.5, 0.9)

0.11716

0.22071

0.22079

0.222

0.22202

0.21989

0.22004

(0.6, 0.1)

0.1243

0.11186

0.11195

0.11318

0.11322

0.11118

0.11127

(0.6, 0.2)

0.22098

0.22113

0.22132

0.22367

0.22375

0.21972

0.21996

(0.6, 0.3)

0.29003

0.32118

0.32145

0.32464

0.32472

0.3192

0.31955

(0.6, 0.4)

0.33147

0.40563

0.40589

0.40946

0.40953

0.40342

0.40377

(0.6, 0.5)

0.34528

0.46658

0.4667

0.47024

0.47029

0.46456

0.46474

(0.6, 0.6)

0.33147

0.49407

0.49407

0.49733

0.49739

0.49243

0.49242

(0.6, 0.7)

0.29003

0.47629

0.4763

0.47921

0.47928

0.47498

0.47492

(0.6, 0.8)

0.22098

0.39981

0.39991

0.40227

0.40237

0.39862

0.3987

(0.6, 0.9)

0.1243

0.24852

0.24868

0.25005

0.25011

0.2477

0.24787

(0.7, 0.1)

0.1202

0.10947

0.10955

0.11064

0.11069

0.10891

0.10897

(0.7, 0.2)

0.21369

0.21692

0.21712

0.21922

0.21932

0.21574

0.21593

(0.7, 0.3)

0.28047

0.31624

0.31654

0.31945

0.31958

0.31453

0.31484

(0.7, 0.4)

0.32053

0.40143

0.40174

0.40512

0.40526

0.39949

0.39981

(0.7, 0.5)

0.33389

0.46487

0.46512

0.46864

0.46882

0.46302

0.46324

(0.7, 0.6)

0.32053

0.49675

0.49698

0.50045

0.50066

0.49515

0.49526

(0.7, 0.7)

0.28047

0.48489

0.48518

0.48848

0.48873

0.48336

0.48353

(0.7, 0.8)

0.21369

0.41408

0.41453

0.4173

0.41752

0.41256

0.41295

(0.7, 0.9)

0.1202

0.26359

0.26391

0.26557

0.26572

0.26245

0.26285

(0.8, 0.1)

0.10121

0.094129

0.094239

0.095136

0.095191

0.093618

0.093724

(0.8, 0.2)

0.17993

0.18715

0.1874

0.18915

0.18926

0.18606

0.18633

(0.8, 0.3)

0.23616

0.27419

0.27458

0.27707

0.27722

0.27257

0.27303

(0.8, 0.4)

0.2699

0.35037

0.35085

0.35384

0.35404

0.34842

0.34897

(0.8, 0.5)

0.28115

0.40936

0.40988

0.41315

0.4134

0.40732

0.4079

(0.8, 0.6)

0.2699

0.44279

0.44336

0.44676

0.44706

0.44072

0.44133

(0.8, 0.7)

0.23616

0.43968

0.44041

0.44375

0.44406

0.43754

0.4383

(0.8, 0.8)

0.17993

0.38499

0.3857

0.38857

0.38886

0.38277

0.3837

(0.8, 0.9)

0.10121

0.25411

0.25467

0.25637

0.25653

0.2526

0.25332

(0.9, 0.1)

0.06292

0.060768

0.060862

0.061397

0.061435

0.060401

0.060516

(0.9, 0.2)

0.11186

0.12139

0.1216

0.12266

0.12273

0.12061

0.12088

(0.9, 0.3)

0.14681

0.17903

0.17936

0.18088

0.18099

0.17785

0.17829

(0.9, 0.4)

0.16779

0.23074

0.23115

0.23302

0.23317

0.22926

0.22983

(0.9, 0.5)

0.17478

0.27262

0.2731

0.27521

0.27539

0.27096

0.27162

(0.9, 0.6)

0.16779

0.29945

0.30002

0.30225

0.30247

0.29768

0.29842

(0.9, 0.7)

0.14681

0.30409

0.30471

0.30695

0.30718

0.30216

0.30303

(0.9, 0.8)

0.11186

0.2755

0.27618

0.27808

0.27828

0.27365

0.27457

(0.9, 0.9)

0.06292

0.19245

0.19285

0.19399

0.19412

0.19117

0.19182


 

А также другие работы, которые могут Вас заинтересовать

28888. Место XX века во всемирно-иторическом процессе 25 KB
  В целом можно сказать что в результате первой мировой войны западная цивилизация попала в ситуацию глубокого кризиса. В период этого кризиса мировое производство товаров упало на 44 разорилось тысячи банков более 100 тыс. В США в период пика кризиса насчитывалось 17 млн. В капиталистических странах Европы и США были выработаны различные модели выхода из кризиса.
28890. Общественно-политические силы на рубеже 19-20вв. Революция 1905-1907 гг. в России и ее особенности 68 KB
  в России и ее особенности. Задачи революции: свержение самодержавия; созыв Учредительного собрания для установления демократического строя; ликвидация сословного неравноправия; введение свободы слова собраний партий и объединений; уничтожение помещичьего землевладения и наделение крестьян землей; сокращение продолжительности рабочего дня до 8 часов; признание права рабочих на стачки и создание профсоюзов; достижение равноправия народов России. В январе 1905г в России началась революция. Характеризуется ослаблением борьбы началом...
28891. Образование политических партий в России (конец XIX—начало XX в.) 48.5 KB
  Канун первой российской революции явился тем историческим моментом когда политические партии в России проходили 1й или 2й этапы своего становления. В зависимости от социальноклассовой основы программных и тактических установок все политические партии образовавшиеся до и в годы революции можно разделить на 4 большие группы: пролетарские большевики; революционнодемократические социалдемократического и левонароднического направлений; буржуазные с выделением двух разновидностей: либеральных и консервативных;...
28892. Предмет и задачи вузовского курса Отечественной истории 22 KB
  Предмет и задачи вузовского курса Отечественной истории. Содержанием истории как науки является исторический процесс. Предметом курса отечественной истории является российский исторический процесс от древности до современности. В процессе изучения истории у человека формируется историческое сознание в содержание которого входит ряд элементов: знание фактов истории; способность рассматривать реальную действительность во всех трех временных измерениях: в прошлом настоящем будущем; обобщенный исторический опыт и вытекающие из него уроки...
28893. Первобытная эпоха человечества 24 KB
  Лет назад до образования классовых обществ в различных регионах планеты примерно в IV тыс. В соответствии с ней в древнейшей эпохе выделяются три периода: каменный век от возникновения человека до III тыс. бронзовый век с конца IV до начала 1 тыс. железный век с 1 тыс.
28894. Древние народы на территории России. Ранние башкиры 22 KB
  С востока из-за Дона устремилась новая волна кочевников – сарматов. В 3-7 вв. н.э. в эпоху Великого Переселения народов на территории Северного Причерноморья, а позднее – между Волгой и Дунаем, хлынули гуннские племена или гунны, вышедшие из степей Забайкалья и Монголии.
28895. Влияние природно-климатического, геополитического и религиозного факторов на российский исторический процесс 22 KB
  Важным географическим фактором определяющим особенности территории страны являются моря озера а также другие водоемы. Фундаментальные особенности ведения крестьянского хозяйства в конечном счете наложили неизгладимый отпечаток на русский национальный характер на первый взгляд противоречивый: способность к крайнему напряжению сил отсутствие ярко выраженной привычки к тщательности аккуратности в работе извечная тяга к подрайской землице необыкновенное чувство доброты коллективизма готовности к оказанию помощи вплоть до...
28896. Место средневековья во всемирно-историческом процессе 23.5 KB
  Место средневековья во всемирноисторическом процессе Понятие средний век было введено итальянскими гуманистами которые хотели таким образом подчеркнуть коренное отличие культуры своего времени от предшествующего исторического периода эпохи Античности. Как видно в оценке средневековья присутствуют крайности. Поразному определяются и временные рамки Средневековья. К тому же внутри тысячелетнего периода Средневековья принято выделять три этапа: Раннее Средневековье V в.