41637

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ СТОКСА

Лабораторная работа

Физика

2 используемая для определения коэффициента вязкости жидкости по методу Стокса представляет собой два стеклянных цилиндрических сосуда 1 наполненных жидкостью различной вязкости в данной работе определяется вязкость только одной жидкости; уровень поверхности жидкости обозначен цифрой 2. Пинцетом аккуратно опускают в сосуд с глицерином маленький шарик по оси симметрии сосуда плотность шарика больше плотности жидкости. Расстояние между поверхностью жидкости 2 и верхним указателем 3 подбирают так чтобы на этом участке скорость шарика...

Русский

2013-10-24

76.01 KB

71 чел.

                                    ЛАБОРАТОРНАЯ   РАБОТА №3

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ СТОКСА

  Цель работы:

Экспериментальное определение коэффициента вязкости жидкости по методу Стокса.

   Приборы и оборудование:

1. Лабораторный стенд

2.Секундомер

3.Набор шариков, смоченных в глицерине.

4.Пинцет.

ОПИСАНИЕ УСТАНОВКИ И ВЫВОД РАССЧЕТНЫХ ФОРМУЛ.

Экспериментальная установка (рис.2) используемая для определения коэффициента вязкости жидкости по методу Стокса, представляет собой два

стеклянных цилиндрических сосуда 1, наполненных жидкостью различной вязкости ( в данной работе определяется вязкость только одной жидкости); уровень поверхности жидкости обозначен цифрой 2. На боковую поверхность сосудов надеты два тонких проволочных кольца 3 и 4. Расстояние между кольцами равно L.

Пинцетом аккуратно опускают в сосуд с глицерином  маленький шарик по оси симметрии сосуда, плотность шарика больше плотности жидкости. Диаметр шарика предварительно измеряют с помощью специального микроскопа. Расстояние между поверхностью жидкости 2 и верхним указателем 3 подбирают так, чтобы на этом участке скорость шарика стабилизировалась; при этом на участке 3-4 движение шарика будет равномерным.

Рассмотрим силы, действующие на шарик, движущийся с постоянной скоростью  в вязкой жидкости (рис.3): сила тяжести ( - объем шарика) направлена вниз, сила Архимеда и  сила Стокса направлены вверх.

Условие постоянства скорости шарика дает (в проекции на вертикальную ось).

  (4)

Подставляя в (4) выражения для сила также учитывая, что объем шара

,

где - диаметр шарика, получим выражение для коэффициента вязкости жидкости :

   (5)

Установившаяся скорость движения шарика на участке 3-4 будет равна:

    (6)

где - время движения шарика между кольцами 3 и 4. Из (5) и (6) получим формулу для определения коэффициента вязкости жидкости:

  (7)

 ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАБОТЫ.

Внутреннее трение (вязкость) – свойство жидкостей и газов оказывать сопротивление при перемещении одной их части относительно другой. Рассмотрим схему вязкого ламинарного (слоистого) течения слоя жидкости, заключенного между двумя параллельными пластинами (рис.1).

Пусть нижняя пластина неподвижна, а верхняя движется горизонтально вправо со скоростью . Тогда в жидкости возникает движение со скоростью .

Закон вязкого трения был установлен Ньютоном. Он имеет вид:

          (1)

где - касательная сила, вызывающая сдвиг слоев жидкости друг относительно друга; - площадь слоя, по которому происходит сдвиг; - градиент скорости течения жидкости (быстрота изменения скорости от слоя к слою);  коэффициент пропорциональности - коэффициент вязкости (внутреннего трения) жидкости. В СИ размерность = Пас.

В условиях установившегося ламинарного течения при постоянной температуре Т коэффициент вязкости жидкости- практически не зависит от градиента скорости.

Вязкость жидкости ( в отличии от вязкости газов) обусловлена межмолекулярным взаимодействием, ограничивающим подвижность молекул между слоями, с одной стороны, и наличием вакантных мест, с другой. Два соприкасающихся слоя молекул жидкости, движущихся с различными скоростями, взаимодействуют между собой и изменяют скорость друг друга. С повышением температуры расстояние между слоями увеличивается, поэтому сила взаимодействия между ними уменьшается, что приводит к уменьшению вязкости жидкости. Кроме того, с увеличением температуры резко возрастает число вакансий, что так же приводит к уменьшение вязкости, поскольку слой относительно слоя перемещается не как единое целое, а благодаря постепенному переходу молекул от одной вакансии к другой. Молекулы жидкости (как и в газах) могут переходить из слоя в слой, но такой механизм вязкости в жидкостях не является определяющим.

Одним из методов экспериментального определения коэффициента вязкости жидкости является метод Стокса. При движении тела в жидкости на него действует сила сопротивления. Стокс вывел формулу, для силы сопротивления, действующей на шар, движущийся в жидкости поступательно с постоянной скоростью. Формула Стокса имеет вид:

         (2)

Здесь  - сила сопротивления; - коэффициент вязкости; - радиус шарика; - скорость поступательного движения шарика. Отметим, что формула Стокса справедлива лишь при условии, что при движении не возникает турбулентность (завихрение) жидкости. Движение прилегающих к шарику слоев должно быть ламинарным. Это условие выполняется при:

     (3)

где - число Рейнольдса – один из так называемых критериев подобия; - плотность жидкости.

                             Методика выполнения работы.

  1.  Включить стенд (вилку – в розетку, тумблер – «Сеть»).
  2.  Включить тумблеры «Контроль» и «Подсветка»
  3.  Измерить диаметр шарика с помощью микроскопа. Измерения проводить не менее трух раз; при этом шарик надо поворачивать. Если его форма значительно отличается от сферической, такой шарик следует забраковать.
  4.  Аккуратно опустить пинцетом шарик в сосуд по оси симметрии.
  5.  Секундомером измерить время прохождения шариком расстояния L между указателями 3 и 4. Следить, чтобы в моменты включения и выключения секундомера (в моменты прохождения шариком меток 3 и 4 соответственно) глаз наблюдателя располагался на уровне соответствующей метки.
  6.  Результаты всех измерений занести в таблицу 1, по формуле (7) определить коэффициент вязкости жидкости.
  7.  Пункты 3-6 повторить для 8-10 шариков, рассчитать погрешности измерений.
  8.  Выключить все тумблеры, выключить стенд.

Примечания: 1. При получении шариков у лаборанта постараться подобрать шарики одинаковых размеров не более 4 мм в диаметре.

                               Выполнение работы.

L,

м

Диаметр шарика,

дел

t,

c

,

Пас

,

Пас

1

d1

d2

d3

dср

2

3

    4

    5

    6

    7

    8

  Ср.

        

Вывод: в ходе лабораторной работы  мы научились определять  коэффициент вязкости жидкости методом Стокса

 

                   Отчёт по лабораторной работе №3

Тема: Определение  коэффициента  вязкости

                жидкости  методом  Стокса

                                                                               Выполнила студентка 1-го курса БХФ

                                                                               Группы 041205 (3)

                                                                               Ткаченко Наталья Николаевна


 

А также другие работы, которые могут Вас заинтересовать

69888. STUDY OF MOMENTUM OF INERTIA WITH MAXWELL’S PENDULUM 156.3 KB
  Maxwell’s pendulum represents a disk, whose axis is suspended on two turning on it threads (fig. 1). It is possible to study experimentally dynamics laws of translational and rotational motions of rigid body using this pendulum, as well as the main law of physics − the law of mechanical energy conservation.
69891. Алгоритми і форми його представлення. Основні структури алгоритмів 572.12 KB
  Мета: набуття навичок побудови блоксхем при розвязуванні алгоритмічних задач. Блоксхеми. Побудувати блоксхему. Теоретичні відомості Основні форми представлення алгоритмів: словесний опис алгоритму; графічне представлення алгоритму блоксхема; мова псевдокодів...
69892. Дослідження ефективності алгоритму 3.19 MB
  Мета: набуття навичок визначення часової складності алгоритму. Теоретичні питання план Функція складності алгоритму. Види функції складності алгоритмів. Часова функція складності.
69893. Алгоритми сортування даних в оперативній пам’яті 59.5 KB
  Під сортуванням розуміють процес перестановки об’єктів даної множини в певному порядку. Мета сортування – полегшити подальший пошук елементів у відсортованій множині. В цьому значенні сортування присутнє майже у всіх задачах обробки інформації.
69894. Програмування задач обробки структур даних, розташованих на зовнішніх носіях 94 KB
  Мета: ознайомитися з поняттям файлу навчитися створювати і читати файли. Теоретичні питання план Поняття файлу. Основні типи файлових структур. Особливості роботи з текстовими файлами.
69895. Циклические вычислительные процессы 145 KB
  Вычислить значения функции a=1.6x3-1.5 на интервале (-1,1) с шагом изменения аргумента 0.25. Выдать на печать отрицательные значения функции с соответствующими им значениями аргумента. Вычислить и вывести на печать таблицу значений функции
69896. Создание псевдонима базы данных 1.11 MB
  При работе с таблицами локальных БД или СУБД сама база размещается либо в каталоге на диске и хранится в виде отдельного набора файлов, либо на удаленном сервере. Обращение к базе данных происходит по ее псевдониму (Database Alias).