41637

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ СТОКСА

Лабораторная работа

Физика

2 используемая для определения коэффициента вязкости жидкости по методу Стокса представляет собой два стеклянных цилиндрических сосуда 1 наполненных жидкостью различной вязкости в данной работе определяется вязкость только одной жидкости; уровень поверхности жидкости обозначен цифрой 2. Пинцетом аккуратно опускают в сосуд с глицерином маленький шарик по оси симметрии сосуда плотность шарика больше плотности жидкости. Расстояние между поверхностью жидкости 2 и верхним указателем 3 подбирают так чтобы на этом участке скорость шарика...

Русский

2013-10-24

76.01 KB

55 чел.

                                    ЛАБОРАТОРНАЯ   РАБОТА №3

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ СТОКСА

  Цель работы:

Экспериментальное определение коэффициента вязкости жидкости по методу Стокса.

   Приборы и оборудование:

1. Лабораторный стенд

2.Секундомер

3.Набор шариков, смоченных в глицерине.

4.Пинцет.

ОПИСАНИЕ УСТАНОВКИ И ВЫВОД РАССЧЕТНЫХ ФОРМУЛ.

Экспериментальная установка (рис.2) используемая для определения коэффициента вязкости жидкости по методу Стокса, представляет собой два

стеклянных цилиндрических сосуда 1, наполненных жидкостью различной вязкости ( в данной работе определяется вязкость только одной жидкости); уровень поверхности жидкости обозначен цифрой 2. На боковую поверхность сосудов надеты два тонких проволочных кольца 3 и 4. Расстояние между кольцами равно L.

Пинцетом аккуратно опускают в сосуд с глицерином  маленький шарик по оси симметрии сосуда, плотность шарика больше плотности жидкости. Диаметр шарика предварительно измеряют с помощью специального микроскопа. Расстояние между поверхностью жидкости 2 и верхним указателем 3 подбирают так, чтобы на этом участке скорость шарика стабилизировалась; при этом на участке 3-4 движение шарика будет равномерным.

Рассмотрим силы, действующие на шарик, движущийся с постоянной скоростью  в вязкой жидкости (рис.3): сила тяжести ( - объем шарика) направлена вниз, сила Архимеда и  сила Стокса направлены вверх.

Условие постоянства скорости шарика дает (в проекции на вертикальную ось).

  (4)

Подставляя в (4) выражения для сила также учитывая, что объем шара

,

где - диаметр шарика, получим выражение для коэффициента вязкости жидкости :

   (5)

Установившаяся скорость движения шарика на участке 3-4 будет равна:

    (6)

где - время движения шарика между кольцами 3 и 4. Из (5) и (6) получим формулу для определения коэффициента вязкости жидкости:

  (7)

 ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАБОТЫ.

Внутреннее трение (вязкость) – свойство жидкостей и газов оказывать сопротивление при перемещении одной их части относительно другой. Рассмотрим схему вязкого ламинарного (слоистого) течения слоя жидкости, заключенного между двумя параллельными пластинами (рис.1).

Пусть нижняя пластина неподвижна, а верхняя движется горизонтально вправо со скоростью . Тогда в жидкости возникает движение со скоростью .

Закон вязкого трения был установлен Ньютоном. Он имеет вид:

          (1)

где - касательная сила, вызывающая сдвиг слоев жидкости друг относительно друга; - площадь слоя, по которому происходит сдвиг; - градиент скорости течения жидкости (быстрота изменения скорости от слоя к слою);  коэффициент пропорциональности - коэффициент вязкости (внутреннего трения) жидкости. В СИ размерность = Пас.

В условиях установившегося ламинарного течения при постоянной температуре Т коэффициент вязкости жидкости- практически не зависит от градиента скорости.

Вязкость жидкости ( в отличии от вязкости газов) обусловлена межмолекулярным взаимодействием, ограничивающим подвижность молекул между слоями, с одной стороны, и наличием вакантных мест, с другой. Два соприкасающихся слоя молекул жидкости, движущихся с различными скоростями, взаимодействуют между собой и изменяют скорость друг друга. С повышением температуры расстояние между слоями увеличивается, поэтому сила взаимодействия между ними уменьшается, что приводит к уменьшению вязкости жидкости. Кроме того, с увеличением температуры резко возрастает число вакансий, что так же приводит к уменьшение вязкости, поскольку слой относительно слоя перемещается не как единое целое, а благодаря постепенному переходу молекул от одной вакансии к другой. Молекулы жидкости (как и в газах) могут переходить из слоя в слой, но такой механизм вязкости в жидкостях не является определяющим.

Одним из методов экспериментального определения коэффициента вязкости жидкости является метод Стокса. При движении тела в жидкости на него действует сила сопротивления. Стокс вывел формулу, для силы сопротивления, действующей на шар, движущийся в жидкости поступательно с постоянной скоростью. Формула Стокса имеет вид:

         (2)

Здесь  - сила сопротивления; - коэффициент вязкости; - радиус шарика; - скорость поступательного движения шарика. Отметим, что формула Стокса справедлива лишь при условии, что при движении не возникает турбулентность (завихрение) жидкости. Движение прилегающих к шарику слоев должно быть ламинарным. Это условие выполняется при:

     (3)

где - число Рейнольдса – один из так называемых критериев подобия; - плотность жидкости.

                             Методика выполнения работы.

  1.  Включить стенд (вилку – в розетку, тумблер – «Сеть»).
  2.  Включить тумблеры «Контроль» и «Подсветка»
  3.  Измерить диаметр шарика с помощью микроскопа. Измерения проводить не менее трух раз; при этом шарик надо поворачивать. Если его форма значительно отличается от сферической, такой шарик следует забраковать.
  4.  Аккуратно опустить пинцетом шарик в сосуд по оси симметрии.
  5.  Секундомером измерить время прохождения шариком расстояния L между указателями 3 и 4. Следить, чтобы в моменты включения и выключения секундомера (в моменты прохождения шариком меток 3 и 4 соответственно) глаз наблюдателя располагался на уровне соответствующей метки.
  6.  Результаты всех измерений занести в таблицу 1, по формуле (7) определить коэффициент вязкости жидкости.
  7.  Пункты 3-6 повторить для 8-10 шариков, рассчитать погрешности измерений.
  8.  Выключить все тумблеры, выключить стенд.

Примечания: 1. При получении шариков у лаборанта постараться подобрать шарики одинаковых размеров не более 4 мм в диаметре.

                               Выполнение работы.

L,

м

Диаметр шарика,

дел

t,

c

,

Пас

,

Пас

1

d1

d2

d3

dср

2

3

    4

    5

    6

    7

    8

  Ср.

        

Вывод: в ходе лабораторной работы  мы научились определять  коэффициент вязкости жидкости методом Стокса

 

                   Отчёт по лабораторной работе №3

Тема: Определение  коэффициента  вязкости

                жидкости  методом  Стокса

                                                                               Выполнила студентка 1-го курса БХФ

                                                                               Группы 041205 (3)

                                                                               Ткаченко Наталья Николаевна


 

А также другие работы, которые могут Вас заинтересовать

81419. Структурно-функциональные социологические парадигмы в анализе социальной работы 35.85 KB
  Основное внимание социологов данного направления сосредотачивается на исследовании того какой вклад различные части общества структуры вносят в интеграцию целостного – социальной системы. Конфликтная модель общества Р. В результате обострение противоречий внутри общества может быть обусловлено рядом причин: диспропорция в распределении власти и отсутствие свободных каналов перераспределения власти. Суть его концепции в следующем: ав каждый момент общество переживает социальный конфликт социальный конфликт вездесущ; б любое общество...
81420. Парадигмы социального поведения при анализе социальной работы 39.02 KB
  Для социального бихевиоризма Скиннера сформировавшегося под влиянием воззрений представителей ортодоксального неопозитивизма и отчасти утилитаризма характерно отождествление механизмов коллективного поведения животных и людей которое рассматривается...
81421. Основные социологические теории и возможность их применения для анализа социальной работы 37.06 KB
  Понимание – познание социального действия через его субъективный смысл который вкладывает в данное действие сам субъект. Суть использования понимания состоит в том чтобы поставить себя в положение других людей для того чтобы увидеть какое именно значение они придают своим действиям или каким целям по своему убеждению служат. Исследование значений человеческих поступков – это в какойто степени просто развитие наших повседневных попыток понять действия множества различных окружающих нас людей. Действие которое соотносится с действиями...
81422. Конформация пептидных цепей в белках (вторичная и третичная структуры). Слабые внутримолекулярные взаимодействия в пептидной цепи; дисульфидные связи 108.54 KB
  Слабые внутримолекулярные взаимодействия в пептидной цепи; дисульфидные связи. βлисты складчатые слои несколько зигзагообразных полипептидных цепей в которых водородные связи образуются между относительно удалёнными друг от друга 0347 нм на аминокислотный остаток в первичной структуре аминокислотами или разными цепями белка а не близко расположенными как имеет место в αспирали. Стабильность вторичной структуры обеспечивается в основном водородными связями определенный вклад вносят и главновалентные связи – пептидные и...
81423. Основы функционирования белков. Активный центр белков и его специфическое взаимодействие с лигандом как основа биологической функции всех белков. Комплементарность взаимодействия молекул белка с лигандом. Обратимость связывания 102.95 KB
  Активный центр белков и его специфическое взаимодействие с лигандом как основа биологической функции всех белков. Каждый индивидуальный белок имеющий уникальную первичную структуру и конформацию обладает и уникальной функцией отличающей его от остальных белков. Набор индивидуальных белков выполняет в клетке множество разнообразных и сложных функций.
81424. Доменная структура и её роль в функционировании белков. Яды и лекарства как ингибиторы белков 106.19 KB
  Яды и лекарства как ингибиторы белков. Некоторые яды попадая в организм человека прочно связываются с определёнными белками ингибируют их и тем самым вызывают нарушения биологических функций. Так лекарства назначаемые в дозах больших чем терапевтические могут действовать как яды т. вызывать серьёзные нарушения обмена веществ и функций организма а яды в микродозах часто используют как лекарственные препараты.
81425. Четвертичная структура белков. Особенности строения и функционирования олигомерных белков на примере гемсодержащего белка - гемоглобина 104.92 KB
  Особенности строения и функционирования олигомерных белков на примере гемсодержащего белка гемоглобина. В частности молекула гемоглобина состоит из двух одинаковых α и двух βполипептидных цепей т. Молекула гемоглобина содержит четыре полипептидные цепи каждая из которых окружает группу гема – пигмента придающего крови ее характерный красный цвет. Простетическая группа нековалентно связана с гидрофобной впадиной молекулы гемоглобина.
81426. Лабильность пространственной структуры белков и их денатурация. Факторы, вызывающие денатурацию 100.13 KB
  Под лабильностью пространственной структуры белка понимают способность структуры белковой молекулы претерпевать конформационные изменения под действием различных физикохимических факторов. Под денатурацией следует понимать нарушение общего плана уникальной структуры нативной молекулы белка преимущественно ее третичной структуры приводящее к потере характерных для нее свойств растворимость электрофоретическая подвижность биологическая активность и т. При непродолжительном действии и быстром удалении денатурирующих агентов возможна...
81427. Шапероны - класс белков, защищающий другие белки от денатурации в условиях клетки и облегчающий формирование их нативной конформации 105.78 KB
  Шаперо́ны (англ. chaperones) — класс белков, главная функция которых состоит в восстановлении правильной третичной структуры повреждённых белков, а также образование и диссоциация белковых комплексов. Термин «молекулярный шаперон» впервые был использован в работе Ласкей и других при описании ядерного белка нуклеоплазмина