41637

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ СТОКСА

Лабораторная работа

Физика

2 используемая для определения коэффициента вязкости жидкости по методу Стокса представляет собой два стеклянных цилиндрических сосуда 1 наполненных жидкостью различной вязкости в данной работе определяется вязкость только одной жидкости; уровень поверхности жидкости обозначен цифрой 2. Пинцетом аккуратно опускают в сосуд с глицерином маленький шарик по оси симметрии сосуда плотность шарика больше плотности жидкости. Расстояние между поверхностью жидкости 2 и верхним указателем 3 подбирают так чтобы на этом участке скорость шарика...

Русский

2013-10-24

76.01 KB

72 чел.

                                    ЛАБОРАТОРНАЯ   РАБОТА №3

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ СТОКСА

  Цель работы:

Экспериментальное определение коэффициента вязкости жидкости по методу Стокса.

   Приборы и оборудование:

1. Лабораторный стенд

2.Секундомер

3.Набор шариков, смоченных в глицерине.

4.Пинцет.

ОПИСАНИЕ УСТАНОВКИ И ВЫВОД РАССЧЕТНЫХ ФОРМУЛ.

Экспериментальная установка (рис.2) используемая для определения коэффициента вязкости жидкости по методу Стокса, представляет собой два

стеклянных цилиндрических сосуда 1, наполненных жидкостью различной вязкости ( в данной работе определяется вязкость только одной жидкости); уровень поверхности жидкости обозначен цифрой 2. На боковую поверхность сосудов надеты два тонких проволочных кольца 3 и 4. Расстояние между кольцами равно L.

Пинцетом аккуратно опускают в сосуд с глицерином  маленький шарик по оси симметрии сосуда, плотность шарика больше плотности жидкости. Диаметр шарика предварительно измеряют с помощью специального микроскопа. Расстояние между поверхностью жидкости 2 и верхним указателем 3 подбирают так, чтобы на этом участке скорость шарика стабилизировалась; при этом на участке 3-4 движение шарика будет равномерным.

Рассмотрим силы, действующие на шарик, движущийся с постоянной скоростью  в вязкой жидкости (рис.3): сила тяжести ( - объем шарика) направлена вниз, сила Архимеда и  сила Стокса направлены вверх.

Условие постоянства скорости шарика дает (в проекции на вертикальную ось).

  (4)

Подставляя в (4) выражения для сила также учитывая, что объем шара

,

где - диаметр шарика, получим выражение для коэффициента вязкости жидкости :

   (5)

Установившаяся скорость движения шарика на участке 3-4 будет равна:

    (6)

где - время движения шарика между кольцами 3 и 4. Из (5) и (6) получим формулу для определения коэффициента вязкости жидкости:

  (7)

 ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАБОТЫ.

Внутреннее трение (вязкость) – свойство жидкостей и газов оказывать сопротивление при перемещении одной их части относительно другой. Рассмотрим схему вязкого ламинарного (слоистого) течения слоя жидкости, заключенного между двумя параллельными пластинами (рис.1).

Пусть нижняя пластина неподвижна, а верхняя движется горизонтально вправо со скоростью . Тогда в жидкости возникает движение со скоростью .

Закон вязкого трения был установлен Ньютоном. Он имеет вид:

          (1)

где - касательная сила, вызывающая сдвиг слоев жидкости друг относительно друга; - площадь слоя, по которому происходит сдвиг; - градиент скорости течения жидкости (быстрота изменения скорости от слоя к слою);  коэффициент пропорциональности - коэффициент вязкости (внутреннего трения) жидкости. В СИ размерность = Пас.

В условиях установившегося ламинарного течения при постоянной температуре Т коэффициент вязкости жидкости- практически не зависит от градиента скорости.

Вязкость жидкости ( в отличии от вязкости газов) обусловлена межмолекулярным взаимодействием, ограничивающим подвижность молекул между слоями, с одной стороны, и наличием вакантных мест, с другой. Два соприкасающихся слоя молекул жидкости, движущихся с различными скоростями, взаимодействуют между собой и изменяют скорость друг друга. С повышением температуры расстояние между слоями увеличивается, поэтому сила взаимодействия между ними уменьшается, что приводит к уменьшению вязкости жидкости. Кроме того, с увеличением температуры резко возрастает число вакансий, что так же приводит к уменьшение вязкости, поскольку слой относительно слоя перемещается не как единое целое, а благодаря постепенному переходу молекул от одной вакансии к другой. Молекулы жидкости (как и в газах) могут переходить из слоя в слой, но такой механизм вязкости в жидкостях не является определяющим.

Одним из методов экспериментального определения коэффициента вязкости жидкости является метод Стокса. При движении тела в жидкости на него действует сила сопротивления. Стокс вывел формулу, для силы сопротивления, действующей на шар, движущийся в жидкости поступательно с постоянной скоростью. Формула Стокса имеет вид:

         (2)

Здесь  - сила сопротивления; - коэффициент вязкости; - радиус шарика; - скорость поступательного движения шарика. Отметим, что формула Стокса справедлива лишь при условии, что при движении не возникает турбулентность (завихрение) жидкости. Движение прилегающих к шарику слоев должно быть ламинарным. Это условие выполняется при:

     (3)

где - число Рейнольдса – один из так называемых критериев подобия; - плотность жидкости.

                             Методика выполнения работы.

  1.  Включить стенд (вилку – в розетку, тумблер – «Сеть»).
  2.  Включить тумблеры «Контроль» и «Подсветка»
  3.  Измерить диаметр шарика с помощью микроскопа. Измерения проводить не менее трух раз; при этом шарик надо поворачивать. Если его форма значительно отличается от сферической, такой шарик следует забраковать.
  4.  Аккуратно опустить пинцетом шарик в сосуд по оси симметрии.
  5.  Секундомером измерить время прохождения шариком расстояния L между указателями 3 и 4. Следить, чтобы в моменты включения и выключения секундомера (в моменты прохождения шариком меток 3 и 4 соответственно) глаз наблюдателя располагался на уровне соответствующей метки.
  6.  Результаты всех измерений занести в таблицу 1, по формуле (7) определить коэффициент вязкости жидкости.
  7.  Пункты 3-6 повторить для 8-10 шариков, рассчитать погрешности измерений.
  8.  Выключить все тумблеры, выключить стенд.

Примечания: 1. При получении шариков у лаборанта постараться подобрать шарики одинаковых размеров не более 4 мм в диаметре.

                               Выполнение работы.

L,

м

Диаметр шарика,

дел

t,

c

,

Пас

,

Пас

1

d1

d2

d3

dср

2

3

    4

    5

    6

    7

    8

  Ср.

        

Вывод: в ходе лабораторной работы  мы научились определять  коэффициент вязкости жидкости методом Стокса

 

                   Отчёт по лабораторной работе №3

Тема: Определение  коэффициента  вязкости

                жидкости  методом  Стокса

                                                                               Выполнила студентка 1-го курса БХФ

                                                                               Группы 041205 (3)

                                                                               Ткаченко Наталья Николаевна


 

А также другие работы, которые могут Вас заинтересовать

18048. Основы теории электрических и магнитных цепей. Конспект лекций по общей электротехнике 1.74 MB
  Конспект лекций по общей электротехнике Основы теории электрических и магнитных цепей Тема 1. Основные понятия и законы теории цепей. Электрические и магнитные цепи. 1. Основные термины теории электрических цепей Электрическая цепь это модель электромагнитного...
18049. Административный процесс и административно-процессуальные правоотношения 1.85 MB
  Понятие и структура административного процесса. Общая характеристика процесса как юридической категории. Основные черты и подходы к пониманию административного процесса как вида юридического проце...
18050. Ускорители схватывания и твердения в технологии бетонов 1.34 MB
  Ускорители схватывания и твердения в технологии бетонов. Ружинский С.И. Часть 1 Еще пол года назад наш доморощенный Квазимодо страдал по Эсмеральде из каждого динамика. Очень красиво и образно страдал следует отдать ему должное. Благодаря всего одной арии из французс...
18051. Краткосрочная финансовая политика предприятия. Учебное пособие 2.77 MB
  Н.М. Крюкова Учебное пособие. Содержание и значение финансовой стратегии фирмы. Определение целей и задач бизнеса. Содержание и порядок разработки финансовой политики фирмы. Что п...
18052. Основы радиации. Радиационное загрязнение территории РБ 599 KB
  1. Радиационное загрязнение территории РБ. Радиоактивность явл результатом процесса кот происх внутри ядер. НТР принесла чел не только технический прогресс но и истощение природных ресурсов загрязнение окр среды усиление техногенной экологической и природной опас
18053. Административно-процессуальное право: Курс лекций 1.11 MB
  Административно-процессуальное право: Курс лекций./ Сост.: В.В. Степанюк Орёл: Орловский юридический институт МВД России 2009 г. 172 с. В данном курсе лекций представлены конспекты лекций по первому разделу: Введение в административнопроцессуал
18054. ТИПИЧНЫЕ ОШИБКИ ПРИ НАЧИСЛЕНИИ НАЛОГОВ И СТРАХОВЫХ ВЗНОСОВ 2.87 MB
  ТИПИЧНЫЕ ОШИБКИ ПРИ НАЧИСЛЕНИИ НАЛОГОВ И СТРАХОВЫХ ВЗНОСОВ Ф.Н. Филина И.А. Толмачев Под редакцией Т.Н. Межуевой. НАЛОГ НА ПРИБЫЛЬ 1.1. Доходы В соответствии со ст. 41 Налогового кодекса РФ доходом признается экономическая выгода в денежной или натурал...
18055. Анализ деятельности коммерческого банка 1.36 MB
  Л.В. КОХ Ю.В. КОХ Анализ деятельности коммерческого банка Учебное пособие Раскрываются основные направления экономического анализа деятельности коммерческого банка. Рассматриваются вопросы анализа состояния и использования собственных и привлеченных средств...
18056. Організація, планування та управління підприємствами галузі: Конспект лекцій 1.35 MB
  Стахурський В.О. Організація планування та управління підприємствами галузі: Конспект лекцій для студ. напрямів 0902 Інженерна механіка 0905 Енергетика 0925 Автоматизація та компютерно-інтегровані технології всіх форм навчання. К. : НУХТ 2009. 113 с. АНОТАЦІЯ К