41640

Исследование преобразования формы и спектра сигналов безинерционным нелинейным элементом

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Снимать и построить график ВАХ нелинейного элемента.3 Вольтамперная стокзатворная характеристика полевого транзистора Аппроксимация ВАХ. На построенной вольтамперной характеристике ВАХ рис.326u2 Кусочнолинейная аппроксимация ВАХ находим коэффициенты аппроксимации S и UOT По графику BX мы получим Uот = 2.

Русский

2013-10-24

92.69 KB

33 чел.

Лабораторная работа №1

Исследование преобразования формы и спектра сигналов безинерционным нелинейным элементом

Цель работы:         

  

Изучение формы и спектра сигналов на выходе резистивной цепи, содержащей безинерционный нелинейный элемент (НЭ) при моно- и бигармоническом воздействии.

Схема работы и измерительная аппаратура

В  данной работе используется универсальный лабораторный стенд со сменным блоком НЕЛИНЕЙНЫЕ ПРЕОБРАЗОВАНИЯ СИГНАЛОВ. Принципиальная схема исследуемой цепи (рис. 1.1) содержит резистивный усилительный каскад на полевом транзисторе.

Рисунок 1.1 – Схема исследуемой цепи

Источниками входных сигналов служат внутренние генераторы, гнезда и регуляторы выходного напряжения которых расположены в левой части стенда (в блоке  ИСТОЧНИКИ СИГНАЛОВ).  Там  же находится  встроенный звуковой генератор типа Г3-111. Входные сигналы, подаваемые на любые из трех входов макета (зажимы 13), а также напряжение смещения Uo, через сумматор (обозначенный через ) подаются на затвор полевого транзистора (зажим 4). Сумматор выполнен на операционном усилителе; его коэффициент передачи по каждому входу равен единице. Схема сумматора исключает взаимное влияние между входами 1, 2 и 3, что позволяет измерять напряжения каждого источника, непосредственно на входе сумматора,  не отключая остальные  источники. Выходом макета является гнездо 5 в цепи стока. Напряжение смещения устанавливается  движковым потенциометром в правой части стенда CМЕЩЕНИЕ и контролируется вольтметром, расположенным выше. Для измерения постоянной составляющей тока стока (iС) там же расположен микроамперметр. Для включения прибора в цепь стока следует нажать кнопку "iС" в середине сменного блока.

В работе используются также встроенный вольтметр переменного напряжения типа В7-38, двухлучевой осциллограф.

рисунке 1.2 приведена схема цепи для исследования в системе Electronics Workbench.

  1.  Снимать и построить график ВАХ нелинейного элемента.

Таблица №1: Вольтамперная характеристика

UЗИ, В

0

-0,5

-1

-1,5

-2

-2,5

-3

-3,5

-4

IC, мА

6,155

4,809

3,591

2,53

1,64

0,93

0,42

0,11

0

Рисунок 1.3 – Вольтамперная (сток-затворная) характеристика полевого транзистора

  1.  Аппроксимация ВАХ.

На построенной вольтамперной характеристике (ВАХ), рис.1.3, следует определить границы  квадратичного участка в пределах (U пор  Uзи   0) и аппроксимировать его зависимостью вида:  

 

Нахождение коэффициентов методом интерполяции.

i(0) =  a0 =6.155

i(-1) = a0 +(-1)a1 + (-1)2a2 = 3.591

i(-3) = a0 + (-3)a1 + (-3)2a2 = 0.42

a0 =6.155

a1 = 2.89

a2 = 0.326

Аппроксимирующая функция     i = 6.155 + 2.89u + 0.326u2

  1.  Кусочно-линейная аппроксимация ВАХ

находим коэффициенты  аппроксимации S и UOT      

По графику BAX мы получим Uот = -2.4 В

  1.  Исследование преобразования моногармонического сигнала:

                                        uЗИ = U0 +  Umcos2f1t,

где  f1=1 кГц.

Преобразование моногармонического сигнала  на квадратичном участке ВАХ.

Положение рабочей точки выбирается на середине квадратичного участка ВАХ,

т.е. U0 = Uпор/2,

где  U пор–пороговое напряжение триода (рис. 1.4). Установить полученное значение U0 потенциометром “Смещение” и занести его в таблицу 1.2 .

Таблица 1.2 - Спектр тока стока

Параметр

U0=4 В; f1 =1кГц;  Um =2 В;

Частота

0

f1

2 f1

3 f1

4 f1

Амплитуда

0

0.44

0.4

0.48

0.52

Амплитуда входного сигнала Um должна быть такой, чтобы сигнал занимал весь квадратичный участок ВАХ (от нуля до отсечки),

т.е. Um =  Uпор/2  (см. рис.1.4).

Рисунок 1.4 – Выбор рабочего участка ВАХ согласно пункту 4.

Ввиду того, что измерительные приборы имеют градуировку в действующих (U), а не амплитудных (Um) значениях,  следует установить на входе макета (гнезда 1, 2 или 3) такое напряжение от источника "1 кГц" (левое верхнее гнездо стенда), чтобы подключенный ко входу вольтметр показывал  U= Um /2.

Рисунок 1.5 Преобразование моногармонического сигнала  на квадратичном участке ВАХ.

  1.  Исследование  преобразования бигармонического сигнала uЗИ = Uо + U1mcos2f1t+ U2mcos2f2t.В качестве второго гармонического сигнала с частотой f2=1,2кГц используется звуковой генератор Г3-111 в блоке «ИСТОЧНИКИ». На один из входов сумматора подать прежний сигнал f1 = 1 кГц, на любой другой - f2 = 1,2 кГц. Заполнить таблицу 1.3.

Преобразование на квадратичном участке ВАХ. На построенной вольтамперной характеристике (ВАХ) определить границы  квадратичного участка (U пор  Uзи 0) и аппроксимировать его зависимостью вида:   i = a (u-Uпор)2,  

Установить смещение Uо = Uпор/2 (рабочая точка на середине квадратичного участка ВАХ). Установить одинаковые амплитуды сигналов от разных источников на обоих входах сумматора U1m=U2m= Uпор /4, при этом суммарный сигнал ("биения") не выйдет за пределы квадратичного участка.

Рассчитать спектр тока. Результаты расчета внести в табл.1.3.

Таблица 1.4.  Спектр тока стока при бигармоническом сигнале

Таблица 1.3.  Спектр тока стока при бигармоническом сигнале

Параметр

U0= 4 В; f1 = 1кГц;  Um1= 1.2 В; f2 =1,2 кГц;  Um2 = 1.2 В

Частота

0

f1

f2

2 f1

2 f2

f1 – f2

f1+ f2

Амплитуда

0

0.8

0.82

0.9

0.91

0.4

0.54

Рисунок 1.6 преобразования бигармонического сигнала

Вывод :

Мы познакомились с  простейшей цепью, содержащей нелинейный безинерционный элемент. Провели квадратичную и кусочно-линейную аппроксимации ВАХ нелинейного элемента и рассчитали спектр тока при моногармоническом воздействии. Результаты расчетов сильно зависят от вида аппроксимации.

Выход второй гармоники тока, т.е. передаточная крутизна S=∆i/∆u

, в случае кусочно-линейной аппроксимации ВАХ получился значительно выше, чем при квадратичной.

Таким образом выполнили следующие поставленные задачи:

- снятие вольтамперной характеристики (ВАХ) нелинейного элемента,

-аппроксимация ВАХ с помощью  полиномиальной и кусочно-линейной функции,

-графоаналитический расчет реакции НЭ при моногармоническом воздействии,

- графоаналитический расчет реакции НЭ при бигармоническом воздействии,

Литература

  1.  Теория электрической связи. Методические указания студентам по выполнению лабораторных работ (часть первая): / АГТУ; Составители:  Зелинский М.М., Семейкин В.Д. -Астрахань, 2009. – 90 с.


 

А также другие работы, которые могут Вас заинтересовать

184. Построение аналитических моделей алгоритмов и оценка их сложности 770.51 KB
  Описание формальной модели алгоритма на основе рекурсивных функций. Описание аналитической модели алгоритма в виде элементарных машин Тьюринга и композиции МТ. Протоколы работы машины Тьюринга. Разработка аналитической модели алгоритма с использованием нормальных алгоритмов Маркова.
185. Информационные технологии в страховой деятельности 67 KB
  Эффективное управление страховым бизнесом в связи с увеличением масштабов страхования требует создания информационных систем страховой деятельности (ИС СД). Автономные автоматизированные рабочие места. Комплекс взаимосвязанных АРМ, функционирующих на единой информационной базе.
186. Аудит підприємства ТОВ «ВСТ» 3.77 MB
  Аудит товарно-матеріальних цінностей на підприємстві ТОВ «ВСТ». Аудит грошових коштів на підприємстві ТОВ «ВСТ». Аудит розрахункових операцій та поточних зобовязань на підприємстві ТОВ «ВСТ». Аудит праці та її оплата на підприємстві ТОВ «ВСТ». Аудит розрахунків з Фондами соціального страхування на підприємстві ТОВ «ВСТ»...
187. Концентрирование кобальта, никеля и кадмия полимерными хелатными сорбентами и их определение в абиотических и биологических объектах 6.52 MB
  Сорбционный метод концентрирования микроэлементов. Сорбенты на основе полистирола. Характеристика состава абиотических и биологических объектов. Расчет статической емкости сорбентов по иону натрия. Выбор элюента для десорбции суммы элементов.
188. Модели согласования инвестиционного контракта 803.86 KB
  Анализ инвестиционного процесса с учетом региональной финансовой политики. Факторинговые операции и технологии, методы оценки эффективности и надежности. Процедуры формирования экономической политики финансового учреждения.
189. Разработка автономной системы энергоснабжения от солнечных модулей на основе структур с переключаемыми конденсаторами 702.58 KB
  Схемы преобразования постоянного напряжения. Устройства на основе конденсаторных преобразователей с переменной структурой. Повышающие преобразователи, регулировка выходного напряжения. Амплитуда тока через зарядные ключи.
190. Средства анализа данных 803 KB
  Формирование в блокноте осмысленной информации, использование программных возможностей WinHex. Обработка данных в программном пакете Математика и проверка суммы вероятностей элементов списка. Расчет величины информационной энтропии.
191. Общие понятия и аксиомы кинетики. Простейшие действия с силами и системами сил 793.3 KB
  Аналитическое создание вектора силы тока. Движение материальной точки по параболе. Условия движения плоскопараллельного тела, его поступательное, равномерное и прямолинейное движение.
192. Финансовое планирование в коммерческой организации 436.5 KB
  Цели, задачи, принципы и этапы финансового планирования. Классификация финансовых планов. Особенности бюджетирования: сущность, функции, виды. Миссия и сущность стратегии финансового планирования организации.