41641

Исследование магнитных характеристик ферритов и магнитодиэлектриков

Лабораторная работа

Физика

Общая характеристика содержания работы: Основным содержанием практической части работы является определение магнитных характеристик магнитных сердечников тороидального типа изготовленных из магнитодиэлектриков и ферритов экспериментальное исследование частотных и температурных изменений начальной магнитной проницаемости H и тангенса угла магнитных потерь tgδM. Для измерения магнитных характеристик используется лабораторная установка включающая измеритель добротности Е4 7...

Русский

2013-10-24

6.56 MB

97 чел.

ЛАБОРАТОРНАЯ РАБОТА № 6

Исследование магнитных характеристик ферритов и магнитодиэлектриков

               Цель работы:

     Освоить методику экспериментального исследования высокочастотных характеристик ферритов и магнитодиэлектриков, используемых в качестве сердечников для катушек индуктивности радиоэлектронной аппаратуры, исследовать частотные и температурные зависимости основных параметров магнитных материалов.

             Общая характеристика содержания работы:

               Основным содержанием практической части работы является определение магнитных характеристик магнитных сердечников тороидального типа, изготовленных из магнитодиэлектриков и ферритов, экспериментальное исследование частотных и температурных изменений начальной магнитной проницаемости µH и тангенса угла магнитных потерь tgδM. Для измерения магнитных характеристик используется лабораторная установка, включающая измеритель добротности Е4 - 7, термокамеру и набор кольцевых сердечников с разными марками ферритов. При выполнении работы используется резонансный метод и технические средства измерения магнитных параметров ферритов и

магнитодиэлектриков в диапазоне 10 кГц - 10 МГц. В процессе работы необходимо соблюдать правила по технике безопасности при работе с электроустановками с напряжением до 1000 В.

Краткие теоретические сведения:

Под ферритами понимают соединения окислов железа Ре20з с окислами других металлов, например соединения со структурной формулой Me0Fe203, где Me - двухвалентный металл (Ni, Со, Fe, Mg, Си, Zn и др.) Одни из этих ферритов (Ni0Fe203, Mn0Fe203) обладают высокими магнитными свойствами, другие (Zn0Fe203, Cd0-Fe203) немагнитны. Существуют ферриты и с другими структурными формулами. Например, ферриты со структурной формулой R3Fe50]2 (ферро-гранаты), где R - иттрий Y или редкоземельный металл (Sm, Pr, Се, La).

Ферриты изготавливают по керамической технологии из смеси солей или окислов соответствующих металлов. После обжига из спрессованных исходных компонентов образуется магнитная керамика с высоким

удельным сопротивлением (ρ до 107 Ом•м). В отличие от диэлектрической керамики ферриты не содержат аморфной (стеклообразной фазы). В зависимости от химического состава исходных компонентов образуются различные кристаллические структуры, определяющие названия ферритов (ферриты-шпинели, ферро-гранаты, ортоферриты, гексаферриты), имеющие различные магнитные свойства и диапазон частот, на которых они могут применяться в качестве магнитных сердечников.

Наиболее широкое применение в области радиочастот нашли ферриты- шпинели: марганец-цинковые и никель-цинковые ферриты, имеющие химическую формулу MeО∙Me'О∙Fe203 (Ме∙О - окислы немагнитного двухвалентного цинка). При маркировке этих ферритов на первом месте стоит цифра, обозначающая среднее значение начальной магнитной проницаемости µн. Затем после цифры стоят буквенные обозначения: Н - низкочастотный феррит, В - высокочастотный феррит. После этого вторая буква обозначает тип феррита по составу: М - марганец-цинковый феррит; Н - никель-цинковый феррит. Например, феррит марки 2000НМ - низкочасотный марганец-цинковый феррит с начальной магнитной проницаемостью 2000; феррит марки 200ВН - высокочастотный никель- цинковый феррит с начальной магнитной проницаемостью 200. В маркировке ферритов могут вводиться дополнительные цифро-буквенные обозначения, указывающие применение данного феррита в конкретных устройствах: П - ферриты, применяемые для перестраиваемых контуров (в ферровариометрах); С - ферриты, используемые в телевизионной технике; И -ферриты, используемые в импульсных трансформаторах; Т - ферриты, используемые для магнитных головок; цифра 1 или 3 - термостабильные ферриты.

      Для оценки допустимого частотного диапазона, в котором может быть использован данный феррит, вводят понятие критической частоты fKp. Обычно под fKp понимают такую частоту, при которой тангенс угла магнитных потерь tgδM достигает значения 0,1.

     Необходимо отметить, что никель-цинковые ферриты обладают лучшими частотными свойствами (большим значением fKp), чем марганец-цинковые ферриты, благодаря большему значению удельного электрического сопротивления. Однако в области частот до 1 МГц марганец-цинковые ферриты характеризуются меньшими потерями на гистерезис в слабых полях и пониженным значением тангенса угла магнитных потерь tgδM (при одинаковом значении µн).

    Ферриты представляют собой сложные оксидные химические соединения, у которых спонтанная намагниченность доменов обусловлена нескомпенсированным антиферромагнетизмом, т.е. материалы, в которых ниже определенной температуры (точки Нееля) спонтанно возникает антипараллельная ориентация элементарных магнитных моментов одинаковых атомов или ионов кристаллической решетки. При перемагничивании ферритовых сердечников синусоидальным магнитным полем образуется динамическая петля гистерезиса, а потери, возникающие при этом, называют полными потерями.

    В слабых магнитных полях и на высоких частотах динамическая петля гистерезиса вследствие отставания индукции от напряженности поля имеет форму эллипса. Отставание по фазе индукции от напряженности объясняется действием вихревых токов, препятствующих согласно закону Ленца изменению индукции, гистерезисом и магнитной вязкостью. Угол отставания δМ называют углом потерь. Для характеристики магнитных свойств материалов, используемых в цепях переменного тока, существуют следующие виды магнитной проницаемости: упругая µ', проницаемость потерь (µ", определяющая величину необратимых потерь в общем случае на гистерезис, вихревые токи, магнитную вязкость, резонансное поглощение и комплексная µ.

Упругая магнитная проницаемость определяется отношением

µ=Вм1/(µ0Нм).                                                        (6.1)

где (µ0 - магнитная постоянная (4π∙10-7 Гн/м); Нм - амплитудное значение напряженности поля.

          Величина µ' совпадает со значением относительной магнитной проницаемости µ.

Проницаемость потерь равна

µ* = ВМ20НМ).                                                      (6.2)

Наиболее полно описывает процессы намагничивания в переменных полях комплексная проницаемость µ

µ=µ’ - jµ” .                                                       (6.3)

Для характеристики потерь в магнитных материалах в переменных полях вводят параметр tgδµ - тангенс угла магнитных потерь, который равен отношению

tgδµ = .                                                            (6.4)

         Он характеризует отношение активной мощности электромагнитного поля Ра, выделяемой в виде тепла, к полной мощности возбуждающего магнитного поля Р (tgS = Ра/Р).

         Обратную величину tgδµ называют добротностью сердечника (Q = l/tgSM).

                 

Лабораторное задание и методические указания к его выполнению.                              Определить   магнитную   проницаемость и тангенс угла магнитных потерь ферритов. Построить их частотные характеристики.

             Методические указания.

   Высокочастотные параметры ферритов определяются на лабораторной установке, структурная схема которой изображена на рис. 6.2. Перед снятием экспериментальных данных следует подготовить к работе лабораторный стенд: переключатель Si установить в положение, отвечающее измеряемой катушке индуктивности, задаваемой преподавателем.

Рис. 6.2. Структурная схема лабораторной установки: 1 - измеритель добротности Е4 - 7;  2 - термокамера

     Измеряемая катушка индуктивности подключается к гнездам “L” измерителя добротности, а частота настройки высокочастотного генератора куметра фиксируется по шкале генератора. Установив частоту генератора, соответствующего рабочей частоте феррита, изменением емкости образцового конденсатора Сх настраивают контур в резонанс и по максимуму отклонения стрелки “Q” определяют действующее значение добротности Q.

      При исследовании частотной зависимости магнитных свойств ферритового сердечника сначала необходимо определить минимальную рабочую частоту. Для этого надо установить емкость образцового переменного конденсатора на максимальное значение, а затем настроить в резонанс по максимальному отклонению стрелки «Q» высокочастотным генератором измерителя добротности. Верхняя рабочая частота исследований будет соответствовать минимальной емкости (С - 35 пФ) образцового переменного конденсатора. Измерение f, С и Q, по которым рассчитываются µ и tgδМ, производить с равномерным интервалом по частоте, включающем не менее десяти точек. Результаты измерений занести в таблицу.

Расчет магнитных параметров выполнить с использованием расчетной программы на ЭВМ. По результатам расчета построить графики зависимостей µ и tgδМ от частоты.

Вывод: в ходе лабораторной работы мы освоили методику экспериментального исследования магнитных характеристик ферритов, используемых в качестве сердечников для катушек индуктивности радиоэлектронной аппаратуры, а также исследовали зависимости магнитной проницаемости и тангенса угла магнитных потерь ферритов от частоты. При выполнении работы используется резонансный метод и технические средства измерения магнитных параметров ферритов и магнитодиэлектриков в диапазоне 10 кГц - 10 МГц.


 

А также другие работы, которые могут Вас заинтересовать

74862. Исследование Проппа «Исторические корни волшебной сказки» 66.32 KB
  Волшебная сказка древнее феодализма создавалась на основе докапиталистических форм и социальной жизни нужно сравнивать с исторической действительностью прошлого важно определить при каком социальном строе создавались отдельные мотивы и вся сказка. Сказка как явление надстроечного характера Часто предпосылки выступают продуктом эпохи. Сказка не соответствует той форме производства при которой она существует. Сказка и социальные институты прошлого.
74863. ПРОБЛЕМЫ ИСТОРИЧЕСКОГО ИЗУЧЕНИЯ ФОЛЬКЛОРА В РАБОТАХ ПРОППА РУССКИЙ ГЕРОИЧЕСКИЙ ЭПОС И РЫБАКОВА ДРЕВНЯЯ РУСЬ. СКАЗАНИЯ. БЫЛИНЫ. ЛЕТОПИСИ 49.27 KB
  Проппа Русский героический эпос первая и остающаяся до сих пор единственной монография посвящённая русским былинам. Автором рассмотрены все многообразные сюжеты так что возможно использовать книгу в качестве справочника по эпосу. Народ вкладывает в эпос свои стремления содержание песен настраивает его на высокий моральный уровень.
74864. Частушки (происхождение, темы, поэтика) 61.23 KB
  Частушка является самым распространенным жанром песенной поэзии. Частушка очень ярко и быстро откликалась на самые разнообразные темы современности. Частушка представляет собой одновременно и памятник далекого прошлого и громкий голос современности. Одна и та же частушка может существовать десятилетиями подвергаясь мелким крупным изменениям.
74865. Роды и виды детского фольклора 57.99 KB
  Пестушка как явление игрового фольклора. Практическая функция. Потешка (“Ладушки”, “Сорока” и др.) и ее развитые игровые и словесные формы. Прибаутки как явление словесного творчества. Их структурные формы как маленьких сказочек в стихах. Особый вид прибауток-перевертыши. Нарочитое смещение в прибаутках реальных связей и отношений как педагогическое свойство и средство комического.
74866. Исторические песни о событиях 16-17 веков 111.49 KB
  Исторические песни как эпический жанр очень близки к былинам но все же отличны от былин по содержанию форме. Термин исторические песни является не народным он введен исследователями фольклора. Чаще всего люди не занимающиеся фольклористикой не выделяют исторические песни как особый жанр называют наравне с былинами старинастаринка.
74867. Духовные стихи и песни (темы, образы, сюжеты, стиль) 109.26 KB
  Основа Духовных стихов книжные повести церковного происхождения источник Священное Писание. Функции Духовных стихов Назидательная Дидактическая Форма исполнения: песенная этим отличается от легенды. Духовные стихи в отношении формы и стиля делятся на Лирические Эпические более древние Общим для лирических эпических и лироэпических стихов является их несомненная зависимость от книжных источников...
74868. Предания. Бывальщины. Былички. Народная демонология 129.68 KB
  Определение жанра как устного повествования о событиях выпадающих из хода повседневной жизни: стихийные бедствия социальные аномалии в том числе войны экстремальные жизненные ситуации в быту на работе на промысле в дороге. Проблема обособления бывальщины как фольклорного жанра в ряду бытовых рассказов. Связь бывальщины с другими жанрами сказками и др. Тематический спектр жанра: рассказы о встречах взаимоотношениях с домовым банником водяным лешим русалкой чертом покойником; о колдунах проклятых; о кладах; о гаданиях и...
74869. Основные понятия финансового менеджмента 1.06 MB
  Основные понятия финансового менеджмента Понятие финансового менеджмента: принципы цели задачи и функции Обеспечение финансового менеджмента Базовые концепции финансового менеджмента Финансовый менеджмент представляет собой систему принципов и методов разработки и реализации управленческих решений связанных с формированием распределением и использованием финансовых ресурсов предприятия и организацией оборота его денежных средств. В какой бы сфере деятельности предприятия не принималось управленческое решение оно прямо или косвенно...
74870. Финансовая стратегия предприятия 969 KB
  Финансовая стратегия предприятия Понятие финансовой стратегии и методы ее разработки Стратегический финансовый анализ и методы его осуществления. Оценка разработанной стратегии Управление и контроль реализации финансовой стратегии. Понятие финансовой стратегии и методы ее разработки Финансовая стратегия представляет собой один из важнейших видов функциональной стратегии предприятия обеспечивающей все основные направления развития его финансовой деятельности и финансовых отношений путем формирования долгосрочных финансовых целей выбора...