41641

Исследование магнитных характеристик ферритов и магнитодиэлектриков

Лабораторная работа

Физика

Общая характеристика содержания работы: Основным содержанием практической части работы является определение магнитных характеристик магнитных сердечников тороидального типа изготовленных из магнитодиэлектриков и ферритов экспериментальное исследование частотных и температурных изменений начальной магнитной проницаемости H и тангенса угла магнитных потерь tgδM. Для измерения магнитных характеристик используется лабораторная установка включающая измеритель добротности Е4 7...

Русский

2013-10-24

6.56 MB

81 чел.

ЛАБОРАТОРНАЯ РАБОТА № 6

Исследование магнитных характеристик ферритов и магнитодиэлектриков

               Цель работы:

     Освоить методику экспериментального исследования высокочастотных характеристик ферритов и магнитодиэлектриков, используемых в качестве сердечников для катушек индуктивности радиоэлектронной аппаратуры, исследовать частотные и температурные зависимости основных параметров магнитных материалов.

             Общая характеристика содержания работы:

               Основным содержанием практической части работы является определение магнитных характеристик магнитных сердечников тороидального типа, изготовленных из магнитодиэлектриков и ферритов, экспериментальное исследование частотных и температурных изменений начальной магнитной проницаемости µH и тангенса угла магнитных потерь tgδM. Для измерения магнитных характеристик используется лабораторная установка, включающая измеритель добротности Е4 - 7, термокамеру и набор кольцевых сердечников с разными марками ферритов. При выполнении работы используется резонансный метод и технические средства измерения магнитных параметров ферритов и

магнитодиэлектриков в диапазоне 10 кГц - 10 МГц. В процессе работы необходимо соблюдать правила по технике безопасности при работе с электроустановками с напряжением до 1000 В.

Краткие теоретические сведения:

Под ферритами понимают соединения окислов железа Ре20з с окислами других металлов, например соединения со структурной формулой Me0Fe203, где Me - двухвалентный металл (Ni, Со, Fe, Mg, Си, Zn и др.) Одни из этих ферритов (Ni0Fe203, Mn0Fe203) обладают высокими магнитными свойствами, другие (Zn0Fe203, Cd0-Fe203) немагнитны. Существуют ферриты и с другими структурными формулами. Например, ферриты со структурной формулой R3Fe50]2 (ферро-гранаты), где R - иттрий Y или редкоземельный металл (Sm, Pr, Се, La).

Ферриты изготавливают по керамической технологии из смеси солей или окислов соответствующих металлов. После обжига из спрессованных исходных компонентов образуется магнитная керамика с высоким

удельным сопротивлением (ρ до 107 Ом•м). В отличие от диэлектрической керамики ферриты не содержат аморфной (стеклообразной фазы). В зависимости от химического состава исходных компонентов образуются различные кристаллические структуры, определяющие названия ферритов (ферриты-шпинели, ферро-гранаты, ортоферриты, гексаферриты), имеющие различные магнитные свойства и диапазон частот, на которых они могут применяться в качестве магнитных сердечников.

Наиболее широкое применение в области радиочастот нашли ферриты- шпинели: марганец-цинковые и никель-цинковые ферриты, имеющие химическую формулу MeО∙Me'О∙Fe203 (Ме∙О - окислы немагнитного двухвалентного цинка). При маркировке этих ферритов на первом месте стоит цифра, обозначающая среднее значение начальной магнитной проницаемости µн. Затем после цифры стоят буквенные обозначения: Н - низкочастотный феррит, В - высокочастотный феррит. После этого вторая буква обозначает тип феррита по составу: М - марганец-цинковый феррит; Н - никель-цинковый феррит. Например, феррит марки 2000НМ - низкочасотный марганец-цинковый феррит с начальной магнитной проницаемостью 2000; феррит марки 200ВН - высокочастотный никель- цинковый феррит с начальной магнитной проницаемостью 200. В маркировке ферритов могут вводиться дополнительные цифро-буквенные обозначения, указывающие применение данного феррита в конкретных устройствах: П - ферриты, применяемые для перестраиваемых контуров (в ферровариометрах); С - ферриты, используемые в телевизионной технике; И -ферриты, используемые в импульсных трансформаторах; Т - ферриты, используемые для магнитных головок; цифра 1 или 3 - термостабильные ферриты.

      Для оценки допустимого частотного диапазона, в котором может быть использован данный феррит, вводят понятие критической частоты fKp. Обычно под fKp понимают такую частоту, при которой тангенс угла магнитных потерь tgδM достигает значения 0,1.

     Необходимо отметить, что никель-цинковые ферриты обладают лучшими частотными свойствами (большим значением fKp), чем марганец-цинковые ферриты, благодаря большему значению удельного электрического сопротивления. Однако в области частот до 1 МГц марганец-цинковые ферриты характеризуются меньшими потерями на гистерезис в слабых полях и пониженным значением тангенса угла магнитных потерь tgδM (при одинаковом значении µн).

    Ферриты представляют собой сложные оксидные химические соединения, у которых спонтанная намагниченность доменов обусловлена нескомпенсированным антиферромагнетизмом, т.е. материалы, в которых ниже определенной температуры (точки Нееля) спонтанно возникает антипараллельная ориентация элементарных магнитных моментов одинаковых атомов или ионов кристаллической решетки. При перемагничивании ферритовых сердечников синусоидальным магнитным полем образуется динамическая петля гистерезиса, а потери, возникающие при этом, называют полными потерями.

    В слабых магнитных полях и на высоких частотах динамическая петля гистерезиса вследствие отставания индукции от напряженности поля имеет форму эллипса. Отставание по фазе индукции от напряженности объясняется действием вихревых токов, препятствующих согласно закону Ленца изменению индукции, гистерезисом и магнитной вязкостью. Угол отставания δМ называют углом потерь. Для характеристики магнитных свойств материалов, используемых в цепях переменного тока, существуют следующие виды магнитной проницаемости: упругая µ', проницаемость потерь (µ", определяющая величину необратимых потерь в общем случае на гистерезис, вихревые токи, магнитную вязкость, резонансное поглощение и комплексная µ.

Упругая магнитная проницаемость определяется отношением

µ=Вм1/(µ0Нм).                                                        (6.1)

где (µ0 - магнитная постоянная (4π∙10-7 Гн/м); Нм - амплитудное значение напряженности поля.

          Величина µ' совпадает со значением относительной магнитной проницаемости µ.

Проницаемость потерь равна

µ* = ВМ20НМ).                                                      (6.2)

Наиболее полно описывает процессы намагничивания в переменных полях комплексная проницаемость µ

µ=µ’ - jµ” .                                                       (6.3)

Для характеристики потерь в магнитных материалах в переменных полях вводят параметр tgδµ - тангенс угла магнитных потерь, который равен отношению

tgδµ = .                                                            (6.4)

         Он характеризует отношение активной мощности электромагнитного поля Ра, выделяемой в виде тепла, к полной мощности возбуждающего магнитного поля Р (tgS = Ра/Р).

         Обратную величину tgδµ называют добротностью сердечника (Q = l/tgSM).

                 

Лабораторное задание и методические указания к его выполнению.                              Определить   магнитную   проницаемость и тангенс угла магнитных потерь ферритов. Построить их частотные характеристики.

             Методические указания.

   Высокочастотные параметры ферритов определяются на лабораторной установке, структурная схема которой изображена на рис. 6.2. Перед снятием экспериментальных данных следует подготовить к работе лабораторный стенд: переключатель Si установить в положение, отвечающее измеряемой катушке индуктивности, задаваемой преподавателем.

Рис. 6.2. Структурная схема лабораторной установки: 1 - измеритель добротности Е4 - 7;  2 - термокамера

     Измеряемая катушка индуктивности подключается к гнездам “L” измерителя добротности, а частота настройки высокочастотного генератора куметра фиксируется по шкале генератора. Установив частоту генератора, соответствующего рабочей частоте феррита, изменением емкости образцового конденсатора Сх настраивают контур в резонанс и по максимуму отклонения стрелки “Q” определяют действующее значение добротности Q.

      При исследовании частотной зависимости магнитных свойств ферритового сердечника сначала необходимо определить минимальную рабочую частоту. Для этого надо установить емкость образцового переменного конденсатора на максимальное значение, а затем настроить в резонанс по максимальному отклонению стрелки «Q» высокочастотным генератором измерителя добротности. Верхняя рабочая частота исследований будет соответствовать минимальной емкости (С - 35 пФ) образцового переменного конденсатора. Измерение f, С и Q, по которым рассчитываются µ и tgδМ, производить с равномерным интервалом по частоте, включающем не менее десяти точек. Результаты измерений занести в таблицу.

Расчет магнитных параметров выполнить с использованием расчетной программы на ЭВМ. По результатам расчета построить графики зависимостей µ и tgδМ от частоты.

Вывод: в ходе лабораторной работы мы освоили методику экспериментального исследования магнитных характеристик ферритов, используемых в качестве сердечников для катушек индуктивности радиоэлектронной аппаратуры, а также исследовали зависимости магнитной проницаемости и тангенса угла магнитных потерь ферритов от частоты. При выполнении работы используется резонансный метод и технические средства измерения магнитных параметров ферритов и магнитодиэлектриков в диапазоне 10 кГц - 10 МГц.


 

А также другие работы, которые могут Вас заинтересовать

17442. Інтуїтивізм А. Бергсона 16.86 KB
  Інтуїтивізм А. Бергсона Один із філософських напрямів кінця XIX початку XX століть інтуїтивізм пов'язаний передусім з іменем видатного французького філософа лауреата Нобелівської премії Анрі Бергсона 18591941. Інтуїтивізм Бергсона складна суперечлива т...
17443. Характеристика напрямків філософії XX ст. 29.75 KB
  Характеристика напрямків філософії XX ст. Початок XX століття ознаменувався революційними змінами в науці відкриттям атома й електрона побудовою теорії відносності та квантової механіки а також становленню психології фрейдизму. На початку століття інтен
17444. Основні ідеї філософської позиції екзистенціалізму 21.53 KB
  Основні ідеї філософської позиції екзистенціалізму Екзистенціалі́зм фр. existentialisme від лат. exsistentia існування Філософія існування напрям у філософії XX ст. що позиціонує і досліджує людину як унікальну духовну істоту що здатна до вибору власної долі. Основни...
17445. Проблеми людини та її свободи у філософії Ж. П. Сартра 17.51 KB
  Проблеми людини та її свободи у філософії Ж. П. Сартра Вихідний пункт екзистенціалізму за Сартром це проблема яку вирішують герої Достоєвського: якщо Бога немає то все дозволено. Разом з Богом зникає можливість знайти якінебудь цінності у надчуттєвому світі. Немає ...
17446. Ветвление: полная форма 108.89 KB
  Лабораторная работа № 7 Ветвление: полная форма 7.1. Вложенные операторы lf...Then Внутрь оператора If_Then можно поместить еще один оператор If_Then. Второй оператор If_Then будет выполняться только если условие в первом выполняется. Второй оператор находится внутри первого. Гово...
17447. Циклы со счетчиком 90.54 KB
  Лабораторная работа № 8 Циклы со счетчиком 8.1. Циклы For ...Next Циклы используются для многократного выполнения одних и тех же операторов кода. Иногда программе нужно повторять какието действия раз за разом пока она не выполнит их нужное количество раз. Поэтому во всех я
17448. Циклы с условием 129.61 KB
  Лабораторная работа № 9 Циклы с условием 9.1. Циклы Do While...Loop Есть множество операций которые нужно повторять пока чтото не произойдет. Это чтото представляет собой условие прекращения процесса. Код в цикле с неопределенным количеством повторений выполняется неиз...
17449. Подпрограммы и функции 59.85 KB
  Лабораторная работа № 10 Подпрограммы и функции Это интересно: В 2003 году была создана система объектноориентированного программирования Visual Basic .NET 2003 а в 2005 году система объектноориентированного программирования Visual Basic 2005 Express Edition затем Visual Basic 2008 потом Visual Basi...
17450. Предмет и метод курса Проектирование информационных систем. Понятие экономической информационной системы 122 KB
  Лекция 1. Предмет и метод курса Проектирование информационных систем. Понятие экономической информационной системы. Классы ИС. Структура однопользовательской и многопользовательской малой и корпоративной ИС локальной и распределенной ИС состав и назначение подсисте...