41686

ОЗНАКОМЛЕНИЕ СО СРЕДСТВАМИ МОДЕЛИРОВАНИЯ И ИССЛЕДОВАНИЯ ЭЛЕКТРОННЫХ СХЕМ В ПРОГРАММЕ EWB

Лабораторная работа

Информатика, кибернетика и программирование

Высокой точностью отличается табличный метод но он наиболее трудоемкий и требует наличие полной принципиальной схемы электронного устройства знание интенсивностей отказов и коэффициента электрической нагрузки каждого элемента схемы. Поэтому последовательность лабораторных работ согласована с этапами расчета надежности а именно: изучение принципиальной схемы усилителя; назначение элементов схемы и их влияние на надежность; настройка схемы и измерение токов и напряжений на каждом элементе схемы; расчет коэффициентов нагрузки и...

Русский

2013-10-24

41.97 KB

11 чел.

ВВЕДЕНИЕ

Надежность – это свойство объекта (устройства, изделия, системы, блока, элемента и  т. д.) сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования.

Основными показателями надежности объекта являются вероятность безотказной работы,  интенсивность отказов, периодичность технического обслуживания, коэффициенты готовности и технического использования, срок службы, время восстановления и т. д. Надежность – комплексное свойство объекта и состоит из сочетания свойств безотказности, долговечности, ремонтопригодности и сохраняемости.

Как правило, расчет надежности сводится к определению показателей безотказности и реже показателей других составляющих надежности по известным показателям надежности элементов, из которых состоит объект. Чаще всего – это интенсивность внезапных отказов комплектующих элементов, приведенная в соответствующих справочниках. В теории надежности изучаются прикидочный, ориентировочный, коэффициентный, табличный методы расчета. Высокой точностью отличается табличный метод, но  он наиболее трудоемкий и требует  наличие полной принципиальной схемы электронного устройства, знание интенсивностей отказов и коэффициента электрической нагрузки каждого элемента схемы.

Лабораторные работы посвящены табличному методу расчета надежности трехкаскадного усилителя на транзисторах. Поэтому последовательность лабораторных работ согласована с этапами расчета надежности, а именно: изучение принципиальной схемы усилителя; назначение элементов схемы и их влияние на надежность; настройка схемы и измерение токов и напряжений на каждом элементе схемы; расчет коэффициентов нагрузки  и определение поправочных коэффициентов по справочнику; расчет реальных интенсивностей внезапных и постепенных отказов элементов схемы и усилителя в целом; расчет надежностных показателей усилителя при различных законах распределения времени безотказной работы.  Работы выполняются в компьютерном классе. Используются программные средства EWB и  Mathcad.

Лабораторная работа 1

ОЗНАКОМЛЕНИЕ  СО  СРЕДСТВАМИ  МОДЕЛИРОВАНИЯ  И  ИССЛЕДОВАНИЯ ЭЛЕКТРОННЫХ  СХЕМ  В  ПРОГРАММЕ  EWB

Ц е л ь   р а б о т ы: пользуясь средствами программы EWB, собрать схему однокаскадного транзисторного усилителя, установить измерительные приборы и измерить коэффициент усиления.

1.1. Краткие сведения из теории

     Для того, чтобы оценить надежность любого электронного устройства, необходимо изучить его принципиальную схему и назначение каждого элемента, выделить основные эксплуатационные и надежностные показатели и определить их зависимость от элементов схемы.

     Надежная работа усилителя заключается в поддержании стабильного коэффициента усиления, сохранении неискаженной формы сигнала в течение заданного времени при заданных условиях.

     Исследование схемы усилителя на компьютере выполним с помощью программы EWB, так как процесс моделирования в ней максимально приближен к реальному эксперименту. Осуществляя естественную последовательность таких операций, как сборка схемы, подключение к ней измерительных приборов, задание параметров генератора входного сигнала и установка режимов на панелях измерительных приборов, получаем результаты измерений в привычной форме. Отображение на дисплее компьютера знакомых приборов, таких как амперметр, вольтметр, генератор, осциллограф, делает процесс исследования наиболее естественным и понятным.

     Основные принципы создания электронных схем в EWB следующие:

  1.  выбор необходимых элементов на соответствующих панелях компонентов и соединение их между собой;
  2.  рациональное расположение этих элементов на рабочей области программы для обеспечения читаемости схемы;
  3.  установка требуемых показателей элементов схемы (сопротивления, емкости, напряжения);
  4.  выбор и подключение соответствующих измерительных приборов.

     Важным условием работы схемы является подключение элементов к общему проводу, а также правильное подключение приборов в схеме.

     Для ознакомления с программными средствами моделирования электронных схем необходимо запустить программу EWB.

     В качестве исследуемой схемы используем схему транзисторного усилителя, которая представлена на рис. 1.1 в виде рабочей области окна программы.

Рис. 1.1. Схема усилителя

1.2. Порядок выполнения работы

 

  1.  Ознакомиться с программными средствами моделирования, запустив программу EWB.
  2.  Изучить правила построения схем, включения в схему генератора, осциллографа, вольтметра, амперметра, источника питания (обратиться к  документу).
  3.  Собрать схему усилителя, изображенную на рис. 1.1.
  4.  Пронумеровать элементы схемы (слева направо, сверху вниз).
  5.  Установить номинальные параметры  резисторов и конденсаторов.
  6.  Установить на входе генератор синусоидального сигнала с параметрами – амплитудой 1 мВ и частотой  по варианту (см. приложение).
  7.  Установить источник питания по варианту (см. приложение).
  8.  Установить осциллограф и подать на канал А входной сигнал, а на канал В – выходной (для их различения на экране осциллографа использовать цветные провода).
  9.  Измерить амплитуды входного и выходного сигналов и рассчитать коэффициент усиления усилителя.
  10.  Схему сохранить для использования ее в следующей лабораторной работе.

1.3. Содержание отчета

  1.  Цель работы.
  2.  Краткое описание правил включения в схему усилителя амперметра, вольтметра, осциллографа.
  3.  Принципиальная схема усилителя в виде рабочей области окна программы.
  4.  Результаты измерений и вычисления коэффициента усиления усилителя.
  5.  Ответы на контрольные вопросы.

1.4. Контрольные вопросы

  1.  Как включен транзистор в схему усилителя и почему «плюс» источника питания подключен к коллекторной цепи?
  2.  Как определить цену деления временной развертки сигнала?
  3.  Как точно измерить амплитуду напряжения, пользуясь возможностями осциллографа?


 

А также другие работы, которые могут Вас заинтересовать

12473. Борьба за Ленинград 49 KB
  Борьба за Ленинград. В планах гитлеровского вермахта Ленинграду отводилось особое место. Ленинградское направление согласно плану Барбаросса являлось одним из трёх главных направлений на котором наряду с Московским и Киевским началось вторжение немецкофашис...
12474. Блокада Ленинграда 519.44 KB
  Реферат Блокада Ленинграда. ВВЕДЕНИЕ Самая страшная осада города в военной истории человечества длилась 871 день Враг снова вокруг Ленинграда Замкнул огневое кольцо. Узнали мы страшное слово блокада И смерти взглянули в лицо [1] Война грянула как г
12475. Блокада Ленинграда (8 сентября 1941 г. – 1 марта 1944 г.) 58.5 KB
  Реферат Блокада Ленинграда ОГЛАВЛЕНИЕ 1. Введение 2. Блокада Ленинграда 8 сентября 1941 г. 1 марта 1944 г. 3. Дорога жизни сентябрь 1941 г. март 1943 г 4. Борьба Ленинграда в кольце блокады 5. Факторы стойкости 6. Прорыв блокады и боевые действия советски
12476. Блокада Ленинграда 872 дня 834.11 KB
  Блокада Ленинграда. Цифры: 332 059 убитых 24 324 небоевых потерь 111 142 пропавших без вести Гражданские потери: 16 747 убито при артобстрелах и бомбардировках 632 253 погибли от голода Блокада Ленинграда длилась с 8
12478. Блокада Ленинграда самое громкоговорящее событие в истории Второй мировой войны 7.67 MB
  Блокада Ленинграда Предисловие Блокада Ленинграда самое громкоговорящее событие в истории Второй мировой войны. В этом страшном и роковом событии погибло около 800 тыс.человек гражданского населения 4 из которых погибло от бомбёжек а остальные 96 от голода. Офици
12479. 27 января – День снятия блокады г. Ленинграда (1944 г.) 1.45 MB
  27 января День снятия блокады г. Ленинграда 1944 г. На Невском надписи пестрели. Кричала каждая стена: Внимание При артобстреле Опасна эта сторона Огонь И смерть вставала к
12480. Проект Блокада Ленинграда 982.66 KB
  Десятилетия прошли со времени окончания Второй Мировой войны, а память о ней продолжает жить в сознании человечества. Интерес к подвигу советского народа не ослабевает. Во время этой страшной, беспощадной войны
12481. Блокада Ленинграда. Хронология блокады Ленинграда 108.53 KB
  Опорный конспект. Блокада Ленинграда. Хронология блокады Ленинграда: 1941 год 4 сентября Начало артиллерийского обстрела Ленинграда 8 сентября Захват немцами Шлиссельбурга. Начало блокады Ленинграда. Первый массивный налёт вражеской авиации на город....