41686

ОЗНАКОМЛЕНИЕ СО СРЕДСТВАМИ МОДЕЛИРОВАНИЯ И ИССЛЕДОВАНИЯ ЭЛЕКТРОННЫХ СХЕМ В ПРОГРАММЕ EWB

Лабораторная работа

Информатика, кибернетика и программирование

Высокой точностью отличается табличный метод но он наиболее трудоемкий и требует наличие полной принципиальной схемы электронного устройства знание интенсивностей отказов и коэффициента электрической нагрузки каждого элемента схемы. Поэтому последовательность лабораторных работ согласована с этапами расчета надежности а именно: изучение принципиальной схемы усилителя; назначение элементов схемы и их влияние на надежность; настройка схемы и измерение токов и напряжений на каждом элементе схемы; расчет коэффициентов нагрузки и...

Русский

2013-10-24

41.97 KB

10 чел.

ВВЕДЕНИЕ

Надежность – это свойство объекта (устройства, изделия, системы, блока, элемента и  т. д.) сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования.

Основными показателями надежности объекта являются вероятность безотказной работы,  интенсивность отказов, периодичность технического обслуживания, коэффициенты готовности и технического использования, срок службы, время восстановления и т. д. Надежность – комплексное свойство объекта и состоит из сочетания свойств безотказности, долговечности, ремонтопригодности и сохраняемости.

Как правило, расчет надежности сводится к определению показателей безотказности и реже показателей других составляющих надежности по известным показателям надежности элементов, из которых состоит объект. Чаще всего – это интенсивность внезапных отказов комплектующих элементов, приведенная в соответствующих справочниках. В теории надежности изучаются прикидочный, ориентировочный, коэффициентный, табличный методы расчета. Высокой точностью отличается табличный метод, но  он наиболее трудоемкий и требует  наличие полной принципиальной схемы электронного устройства, знание интенсивностей отказов и коэффициента электрической нагрузки каждого элемента схемы.

Лабораторные работы посвящены табличному методу расчета надежности трехкаскадного усилителя на транзисторах. Поэтому последовательность лабораторных работ согласована с этапами расчета надежности, а именно: изучение принципиальной схемы усилителя; назначение элементов схемы и их влияние на надежность; настройка схемы и измерение токов и напряжений на каждом элементе схемы; расчет коэффициентов нагрузки  и определение поправочных коэффициентов по справочнику; расчет реальных интенсивностей внезапных и постепенных отказов элементов схемы и усилителя в целом; расчет надежностных показателей усилителя при различных законах распределения времени безотказной работы.  Работы выполняются в компьютерном классе. Используются программные средства EWB и  Mathcad.

Лабораторная работа 1

ОЗНАКОМЛЕНИЕ  СО  СРЕДСТВАМИ  МОДЕЛИРОВАНИЯ  И  ИССЛЕДОВАНИЯ ЭЛЕКТРОННЫХ  СХЕМ  В  ПРОГРАММЕ  EWB

Ц е л ь   р а б о т ы: пользуясь средствами программы EWB, собрать схему однокаскадного транзисторного усилителя, установить измерительные приборы и измерить коэффициент усиления.

1.1. Краткие сведения из теории

     Для того, чтобы оценить надежность любого электронного устройства, необходимо изучить его принципиальную схему и назначение каждого элемента, выделить основные эксплуатационные и надежностные показатели и определить их зависимость от элементов схемы.

     Надежная работа усилителя заключается в поддержании стабильного коэффициента усиления, сохранении неискаженной формы сигнала в течение заданного времени при заданных условиях.

     Исследование схемы усилителя на компьютере выполним с помощью программы EWB, так как процесс моделирования в ней максимально приближен к реальному эксперименту. Осуществляя естественную последовательность таких операций, как сборка схемы, подключение к ней измерительных приборов, задание параметров генератора входного сигнала и установка режимов на панелях измерительных приборов, получаем результаты измерений в привычной форме. Отображение на дисплее компьютера знакомых приборов, таких как амперметр, вольтметр, генератор, осциллограф, делает процесс исследования наиболее естественным и понятным.

     Основные принципы создания электронных схем в EWB следующие:

  1.  выбор необходимых элементов на соответствующих панелях компонентов и соединение их между собой;
  2.  рациональное расположение этих элементов на рабочей области программы для обеспечения читаемости схемы;
  3.  установка требуемых показателей элементов схемы (сопротивления, емкости, напряжения);
  4.  выбор и подключение соответствующих измерительных приборов.

     Важным условием работы схемы является подключение элементов к общему проводу, а также правильное подключение приборов в схеме.

     Для ознакомления с программными средствами моделирования электронных схем необходимо запустить программу EWB.

     В качестве исследуемой схемы используем схему транзисторного усилителя, которая представлена на рис. 1.1 в виде рабочей области окна программы.

Рис. 1.1. Схема усилителя

1.2. Порядок выполнения работы

 

  1.  Ознакомиться с программными средствами моделирования, запустив программу EWB.
  2.  Изучить правила построения схем, включения в схему генератора, осциллографа, вольтметра, амперметра, источника питания (обратиться к  документу).
  3.  Собрать схему усилителя, изображенную на рис. 1.1.
  4.  Пронумеровать элементы схемы (слева направо, сверху вниз).
  5.  Установить номинальные параметры  резисторов и конденсаторов.
  6.  Установить на входе генератор синусоидального сигнала с параметрами – амплитудой 1 мВ и частотой  по варианту (см. приложение).
  7.  Установить источник питания по варианту (см. приложение).
  8.  Установить осциллограф и подать на канал А входной сигнал, а на канал В – выходной (для их различения на экране осциллографа использовать цветные провода).
  9.  Измерить амплитуды входного и выходного сигналов и рассчитать коэффициент усиления усилителя.
  10.  Схему сохранить для использования ее в следующей лабораторной работе.

1.3. Содержание отчета

  1.  Цель работы.
  2.  Краткое описание правил включения в схему усилителя амперметра, вольтметра, осциллографа.
  3.  Принципиальная схема усилителя в виде рабочей области окна программы.
  4.  Результаты измерений и вычисления коэффициента усиления усилителя.
  5.  Ответы на контрольные вопросы.

1.4. Контрольные вопросы

  1.  Как включен транзистор в схему усилителя и почему «плюс» источника питания подключен к коллекторной цепи?
  2.  Как определить цену деления временной развертки сигнала?
  3.  Как точно измерить амплитуду напряжения, пользуясь возможностями осциллографа?


 

А также другие работы, которые могут Вас заинтересовать

5189. Предмет і завдання медичної генетики. Роль спадковості в патології людини 150 KB
  Предмет і завдання медичної генетики. Роль спадковості в патології людини Предмет та завдання медичної генетики. Значення генетики для медицини. Питома вага природженої та спадкової патології у структурі захворюваності й смертності...
5190. Генетика людини. Основи загальної генетики. Курс лекций 496.5 KB
  Галузь біології, яка вивчає явища спадковості та мінливості живих організмів, називається генетикою. Наука генетика поділяється на загальну та спеціальну, або прикладну частини. Загальна генетика вивчає закони, закономірності та механізми спад...
5191. Генетика микроорганизмов. Наследственные факторы микроорганизмов 92.5 KB
  Генетика микроорганизмов Сохранение специфических структурных и функциональных свойств организмов, т. е. постоянство признаков на протяжении многих поколений, называют наследственностью. Впервые материалы для познания механизма наследственности был...
5192. Генетика микроорганизмов. Фенотипическая и генотипическая изменчивость 34.5 KB
  Генетика микроорганизмов Общие понятия. Наследственность – способность живых организмов сохранять определенные признаки на протяжении многих поколений. Изменчивость – приобретение новых признаков, отличающих их от других поколений по...
5193. Загальна характеристика мітохондріальної патології. Клініка, діагностика, лікування 99.5 KB
  Загальна характеристика мітохондріальної патології. Клініка, діагностика, лікування. Характеристика мітохондріального геному. Етіопатогенез мітохондріальних захворювань. Класифікація мітохондропатій. Клініка найбільш поширени...
5194. Генетика микроорганизмов. Основные понятия о генетике микроорганизмов 35.5 KB
  Генетика микроорганизмов. Основные понятия о генетике микроорганизмов. Фенотипическая изменчивость. Генотипическая изменчивость. Диссоциация особая форма изменчивости. Практическое значение изменчивости. Основные понятия о генетике...
5195. Генетика популяций. Разнообразные подходы к изучению генетики популяций 72.5 KB
  Генетика популяций Термин популяция происходит от латинского populus – население. Долгое время (начиная с конца XVIII в.) популяцией называли (а часто называют и сейчас) любую группировку организмов, обитающих на определенной территории. В 1903...
5196. Генетика статі 37.5 KB
  Генетика статі Мета: ознайомити студентів з явищем зчепленого зі статтю успадкування, взаємодія генів, множинна дія генів, позаядерна спадковість. Формувати навички розв’язування задач з генетики. План Хромосомне визначення статі Сп...
5197. Генетика в тестах и задачах 674 KB
  Генетика в тестах и задачах В учебном пособии даны тестовые вопросы к зачетному занятию по общей генетике. Показаны схемы решения задач на разные типы взаимодействия генов: аллельных, неаллельных, сцепленных с полом, сцепления генов, молекулярной ге...