41857

АНАЛОГО-ЦИФРОВОЙ ПРЕОБРАЗОВАТЕЛЬ

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Входным сигналом АЦП в течение некоторого промежутка времени t является постоянное напряжение равное отсчёту uвхkt входной аналоговой функции uвх. За это время на выходе АЦП формируется цифровой обычно двоичный код соответствующий дискретному отсчёту напряжения uвхkt. Количественная связь для любого момента времени определяется соотношением где u шаг квантования входного аналогового напряжения uвх; i погрешность преобразования напряжения uвхkt на данном шаге. Процесс квантования по уровню дискретизированной функции uвхkt...

Русский

2013-10-26

234.35 KB

9 чел.

Лабораторная работа 16

АНАЛОГО-ЦИФРОВОЙ ПРЕОБРАЗОВАТЕЛЬ

ЦЕЛЬ РАБОТЫ

Ознакомление с принципом работы и испытание интегрального 8-разрядного аналого-цифрового преобразователя.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

1. СТРУКТУРНАЯ СХЕМА АЦП ПОСЛЕДОВАТЕЛЬНОГО

ДЕЙСТВИЯ

Аналого-цифровой преобразователь (АЦП) – устройство, предназначенное для преобразования аналоговых величин в их цифровой эквивалент в различных системах исчисления. Входным сигналом АЦП в течение некоторого промежутка времени t является постоянное напряжение, равное отсчёту uвх(kt) входной аналоговой функции uвх. За это время на выходе АЦП формируется цифровой (обычно двоичный) код

,

соответствующий дискретному отсчёту напряжения uвх(kt). Количественная связь для любого момента времени определяется соотношением

,

где u   шаг квантования входного аналогового напряжения uвх; i – погрешность преобразования напряжения uвх(kt) на данном шаге.

Физический процесс аналого-цифрового преобразования состоит из дискретизации по времени аналогового сигнала, квантования по уровню и кодирования [8]. Процесс дискретизации аналогового сигнала длительностью tвх выполняется в соответствии с теоремой Котельникова, определяющей необходимый шаг дискретизации  t  1/(2fm), где fm – максимальная частота спектра входного сигнала, и число шагов М = tвх/t.

Процесс квантования по уровню дискретизированной функции uвх(kt) заключается в отображении бесконечного множества её значений на некоторое множество конечных значений uд(k), равное числу уровней квантования N = uвх.max/u.  Процесс квантования по уровню (округление каждого значения uвх(kt) до ближайшего уровня uд(k)) приводит к возникновению ошибки (шума) квантования, максимальное значение которой 1/2u определяется разрядностью используемого выходного кода. При увеличении разрядности выходного кода ошибка квантования может быть уменьшена до сколь угодно малой величины, но не может быть сведена к нулю выбором параметров устройства, так как она присуща данному алгоритму.

Процесс кодирования заключается в замене найденных квантованных  N + 1 значений входного сигнала uд(k) некоторыми цифровыми кодами.

На рис. 16.1, а приведена характеристика идеального АЦП в нормированных единицах входного напряжения uвх.н = uвх/uвх.max. Кроме ошибки квантования, при оценке точности АЦП учитывают дополнительные погрешности: инструментальную (погрешность смещения нуля, вызывающей смещение пунктирной прямой L влево или вправо от начала координат, см. рис. 16.1, а) и апертурную, возникающую из-за несоответствия значения входного сигнала uд(k) преобразованному цифровому коду Аi. Несоответствие возникает, если входной сигнал в течение интервала дискретизации t изменяется более чем на значение шага квантования u.

u

uвх.н

 Аi

111

110

101

100

011

010

001

000

а)

S  T

R

uвх

б)

Рис. 16.1

ОУ

ГТИ

&

CT

R

CT

+1

0 1/8 2/8 3/8 4/8 5/8 6/8 7/8  1

L

1

2

2n

uвх

uЦАП

Пуск

 Ai

ЦАП

t

2. ОСНОВНЫЕ ПАРАМЕТРЫ АЦП

К основным параметрам АЦП относят:

число разрядов выходного кода п = 8, …, 16, отображающего исходную аналоговую величину, которое может формироваться на выходе АЦП. При использовании двоичного кода п = log2(N + 1), где N + 1  максимальное число кодовых комбинаций (уровней квантования) на выходе АЦП;

диапазон изменения входного напряжения uвх.max. Отметим, что АЦП может обрабатывать входную информацию в виде однополярного аналогового напряжения с пределами 0…uвх.max и двуполярного  uвх.max /2;

абсолютная разрешающая способность ЗМР = u  (значение младшего разряда) – среднее значение минимального изменения входного сигнала uвх, обуславливающего увеличение или уменьшение выходного кода на единицу. Значение ЗМР определяется разрядностью выходного кода и диапазоном входного напряжения;

абсолютная  погрешность i преобразования в конечной точке шкалы есть отклонение реального максимального значения входного сигнала uвх.max от максимального значения идеальной характеристики L АЦП (см. рис. 16.1, а). Обычно I измеряется в ЗМР;

максимальная частота преобразования (десятки и сотни килогерц);

время преобразования входного сигнала: tnp.max  (1/2)t.

Состав АЦП в отличие от ЦАП может изменяться в значительной степени в зависимости от выбранного метода преобразования и способа его реализации. Наибольшее распространение получили три основных метода: последовательного счёта, поразрядного кодирования и считывания.

Метод последовательного счёта основан на уравновешивании входной величины суммой одинаковых по величине эталонов (суммой шагов квантования). Момент уравновешивания определяется с помощью одного компаратора, а количество эталонов, уравновешивающих входную величину, подсчитывается с помощью счётчика.

Метод поразрядного кодирования (уравновешивания) предусматривает наличие нескольких эталонов (часто реализованных в виде уравновешивающего сдвигающего регистра), обычно пропорциональных по величине степеням числа 2, и сравнение этих эталонов с аналоговой величиной. Сравнение начинается с эталона старшего разряда. В зависимости от результата этого сравнения формируется значение старшего разряда выходного кода. Если эталон больше входной величины, то в старшем разряде ставится 0 и далее производится уравновешивание входной величины следующим по значению эталоном. Если эталон равен или меньше входной величины, то в старшем разряде выходного кода ставится 1 и в дальнейшем производится уравновешивание разности между входной величиной и первым эталоном.

Наибольшим быстродействием обладают преобразователи, построенные по методу считывания. Метод считывания подразумевает наличие 2п  1 эталонов при п-разрядном двоичном коде. Входная аналоговая величина одновременно сравнивается со всеми эталонами. В результате преобразования получается параллельный код в виде логических сигналов на выходах 2п  1 компараторов.

По структуре построения ИМС АЦП подразделяют на АЦП с применением ЦАП и без них.

Основные направления  развития АЦП – повышение быстродействия основных узлов, в частности, компараторов до 5…10 нс, повышение их точности до 0,05…0,005%, увеличение разрядности преобразователей до 24, использование микропроцессоров в преобразователях.

УЧЕБНЫЕ ЗАДАНИЯ

Задание 1. .( для четных вариантов) Запустить лабораторный комплекс Labworks и среду МS10 (щёлкнув мышью на команде Эксперимент меню комплекса Labworks). Открыть файл 36.4.ms10, размещённый в папке Circuit Design Suite 10.0 среды МS10, или собрать на рабочем поле среды MS10 схему для испытания аналого-цифрового преобразователя с ЦАП (рис. 16.2) и установить в диалоговых окнах компонентов их параметры или режимы работы. Скопировать схему (рис. на страницу отчёта.

В схему (рис. 16.2) включены собственно библиотечный 8-разрядный АЦП (ADC); источники опорного напряжения E1 и E2 (подключены к входам Vref+ и Vref- АЦП); генератор E4 для синхронизации работы (подключен к входу SОС) и разрешения (вход ОЕ) на выдачу двоичной информации на выходы D0, …, D7 АЦП, с которыми соединены входы логического анализатора XLA1 и пробники Х0, …, Х7; функциональный генератор ХFG1 в качестве источника входного сигнала uвх (подключен к входу Vin); ЦАП (DAC) и осциллограф XSC1. Выход ЕОС служит для передачи

Рис. 16.2

двоичной информации АЦП, например, на ЭВМ.

 Исследовать точность преобразования АЦП уровней входного напряжения uвх в цифровой код с помощью пробников Х0, …, Х7, логического анализатора ХLA1, а также ЦАП и осциллографа XSC1.

С этой целью:

временно удалить провод 1 (см. рис. 16.2) и подключить вход Vin АЦП к положительному полюсу источника постоянного напряжения Е3;

 составить таблицу, аналогичную табл. 36.1, в первый столбец которой записать уровни напряжения

uвх  =  0,1; 0,2; 0,5; 1,0; 1,5; 2,0; 2,4; -0,5; 1,0: 2,0 В,

поочерёдно задаваемые в диалоговом окне генератора Е3;

 установить в диалоговых окнах генераторов Е1 и Е2 ЭДС Е1 = 2,5 В, и ЭДС Е2 = 2,5 В;

 запустить программу моделирования АЦП и заносить в поля составленной таблицы значения напряжения uвых(ЦАП) с выхода ЦАП, измеряемые на экране осциллографа с помощью визирной линии; двоичный эквивалент D(2) преобразуемого напряжения, определяемый по свечению пробников Х7, …, Х0; шестнадцатеричный код D(16), считываемый с дисплея анализатора XLA1;

получаемые с выхода АЦП десятичные инверсные сигналы D(10)инв пересчитать на неинверсные D(10) по выражению

D(10) = D(10)инв  128

и занести в соответствующие столбцы таблицы;

расчётные десятичные эквиваленты D(10)расч двоичного кода D(2) на выходе АЦП при заданном значении входного напряжения uвх определить по формуле

D(10)расч = 256uвх /(E1 + E2),

и занести во второй справа столбец таблицы;

 рассчитать погрешности измерения напряжения по выражению

ΔU% = 100(uвых(ЦАП)  uвх)/uвх

и занести в правый столбец таблицы.

В качестве примера в табл. 16.1 приведены данные измерений при моделирования АЦП при E1 = 3 В и E2 = 3 В,  которые близки к расчётным значениям. Так, при E1 = E2= 3 В и uвх = E3 = 1 B расчётный десятичный эквивалент D(10)расч = 2561/6  42,67 при  измеренном D(2) = 10101010 и    D(10) = 42. При этом погрешность измерения составила 3,56%.

Т а б л и ц а  16.1

uвх,

В

uвых(ЦАП),

В

D(2)

D(16)

D(10).инв 

D(10)

D(10)расч

ΔU%

0,1

0,09375

10000100

84

132

4

4,27

6,25

0,5

0,5156

10010101

95

149

21

21,33

3,12

1,0

0,9644

10101010

АА

170

42

42,67

3,56

2,0

2,017

11010101

D5

213

85

85,34

0,85

2,5

2,484

11101010

ЕА

234

106

106,67

0,64

2,9

2,906

11111011

FB

251

123

123,74

0,21

-1,0

-0,9844

01010101

55

85

-43

-42,67

3,56

Задание 2.( для нечетных вариантов). Исследовать процесс преобразования входного напряжения треугольной формы в цифровые коды, а затем с помощью ЦАП  в ступенчатое напряжение, аппроксимирующее напряжение uвх.

Для этого:

 удалить провод, соединяющий выход генератора Е3 с входом Vin АЦП, и восстановить провод 1, соединяющий выход "+" функционального генератора XFG1 с входом Vin АЦП (см. рис. 16.2);

 установить параметры генератора XFG1 (рис. 16.3, а): напряжение треугольной формы со скважностью N = 99 и амплитудой 1 В (диапазон от 1 В до 0,98 В) и его частоту fг = 50 Гц;

 запустить программу моделирования АЦП;

 получить и скопировать на страницу отчета осциллограмму входного напряжения uвх, осциллограмму ступенчатого напряжения uвых(ЦАП) с выхода ЦАП (см. рис. 16.3, б), и временные диаграммы сигналов с выходов D0, …, D7 АЦП, поступающих на входы логического анализатора XLA1 и являющимися двоичными эквивалентами дискретных отсчётов uвх(kt)

 а)

 б)

Рис. 16.3

входного напряжения (рис. 16.4);

Рис. 16.4

воспользовавшись визирными линиями, провести анализ формирования напряжения uвых(ЦАП), аппроксимирующего входное напряжение uвх, в частности, измерить напряжение и высоту его ступеней в разные моменты преобразования (с интервалом в 1 мс в моменты положительного перепада тактового импульса синхронизации) и сравнить их с отсчётами uвх(kt) напряжения uвх.

    Так, при частоте синхронизации  fс = 1 кГц и частоте пилообразного напряжения fг = 50 Гц образовалось на выходе ЦАП двадцать ступеней напряжения uвых(ЦАП), средняя высота которых равна Uст  93,7 мВ при расчётном значении u = uвх.max/(N + 1) = 1,98/21 = 94 мВ. Первая ступень высотой 66 мВ сформировалась по истечении 0,5 мс с момента включения моделирования при уровне входного напряжения uвх = 93,4 мВ, вторая  при uвх = 0,849 В высотой 93,75 мкВ и и т. д.

СОДЕРЖАНИЕ ОТЧЁТА

1. Наименование и цель работы.

2. Перечень приборов, использованных в экспериментах, с их краткими характеристиками.

3. Изображение электрической схемы для испытания аналого-цифрового преобразователя.

4. Копии осциллограмм и временных диаграмм сигналов с разных узлов схемы, отображающие работу исследуемого АЦП.

5. Таблица с результатами измерений и расчётов входных отсчетов входного напряжения и выходных кодов АЦП.

6. Выводы по работе.


 

А также другие работы, которые могут Вас заинтересовать

76927. Сосудистая оболочка глаза, ее части. Механизм аккомодации 180.92 KB
  Ресничное тело средний отдел сосудистой оболочки расположен в виде кругового валика соответственно месту перехода роговицы в склеру сзади от радужки с которой срастается наружным ресничным краем. В центре радужка имеет зрачок ограниченный зрачковым краем сосудистой оболочки а противоположный ему край называется ресничным. В сосудистой оболочке находятся ресничные артерии: задние и передние; короткие и длинные. Из венозной сети сосудистой оболочки формируются вортикозные вены 46 проходящие через склеру и впадающие в...
76928. Сетчатая оболочка глаза. Проводящий путь зрительного анализатора 181.61 KB
  Внутренняя или сетчатая оболочка глаза плотно срастается с сосудистой по всей площади соприкосновения. Центральная ямка макулы сосредотачивает только колбочковые нейросенсорные клетки и в нее ldquo;упираетсяrdquo; оптическая ось глаза. Проводящий зрительный путь Рецепторное поле это сетчатая оболочка глаза с палочко и колбочковидными клетками содержащими светочувствительный пигмент родопсин йодопсин.
76929. Вспомогательный аппарат глазного яблока 179.9 KB
  Чувствительная иннервация осуществляется за счет глазничной ветви тройничного нерва при помощи: длинных ресничных ветвей из носоресничного нерва и подглазничного нерва от второй ветви пятой пары. Иннервация мышц происходит из глазодвигательного нерва: прямые мышцы верхняя нижняя медиальная нижняя косая подниматель верхнего века. Из отводящего нерва снабжается прямая латеральная мышца; из блокового верхняя косая; из лицевого нерва круговая мышца глаза. Их топография строение кровоснабжение иннервация.
76930. Органы вкуса и обоняния 180.85 KB
  Во вкусовых почках передних 2 3 третей языка обнаружен сладко чувствительный белок а в задней части горько чувствительный. Вкусовые вещества адсорбируются микроворсинками вкусовых сенсорных эпителиоцитов и в них сталкиваются с рецепторными белками клетки что изменяет проницаемость мембран вкусовых эпителиоцитов и генерирует импульс. На боковых поверхностях вкусовых клеток замыкаются: в области передних 2 3 языка терминали барабанной струны промежуточного нерва VII черепной пары; на задней 1 3 языка и слизистой неба и глотки ...
76931. Анатомия кожи и ее производных. Молочная железа: топография, строение, кровоснабжение, иннервация 191.33 KB
  В нем залегают корни волос потовые и сальные железы лимфоидные узелки иммунной системы. В сумку открывается проток сальной железы. Потовые glndule sudorifere это простые трубчатые железы в количестве 225 млн. По строению и функции потовые железы делятся на мерокриновые и апокриновые.
76932. Классификация желез внутренней секреции 181.69 KB
  Щитовидная и паращитовидные железы принадлежащие этой группе имеют энтодермальное происхождение и развиваются из эпителия глоточной части первичной кишки из закладки между 1й и 2й висцеральными дугами. В процессе развития формируется щитоязычный проток из дистальных отделов которого возникают доли и перешеек щитовидной железы после чего проток редуцируется. Паращитовидные железы развиваются из эпителия 34 висцеральных жаберных карманов глоточной кишки.
76933. Бранхиогенные железы 180.89 KB
  Внутри железы находятся дольки лежащие между фиброзными перегородками трабекулами. Размеры железы: поперечный 3060 мм продольный 50 мм высота перешейка 515 мм; масса железы 2530 г. Паращитовидные железы гландула паратиреоидеа верхние и нижние овальные тельца длиной 48 мм шириной 34 мм толщиной 23 мм.
76934. Неврогенные железы внутренней секреции: гипофиз, мозговое вещество надпочечника, и шишковидная железа – их строение, топография, функция, развитие 186.73 KB
  Эта энтодермальная структура растет в сторону головного мозга и его третьего желудочка проходя через формирующийся интраклиновидный синхондроз и его канал в полость черепа. Над гипофизом в нижней части промежуточного мозга располагается гипоталамус в составе зрительного перекреста зрительных трактов серого бугра с воронкой сосцевидных тел. Эпифиз входит в состав эпиталамической области промежуточного мозга и связан со зрительными буграми поводками и их треугольниками спайками. Он располагается в широкой борозде между верхними холмиками...
76935. Железы адреналовой системы 178.87 KB
  Интерреналовые тельца добавочные надпочечники возникают при развитии почек и надпочечников. Закладка располагается в задней стенке целома между первичными почками и возникает из мезодермальных клеток образующих корковое вещество почек и надпочечников. Мозговое вещество располагается в центре надпочечников и состоит из крупных клеток окрашиваемых солями хрома.